Advanced25 min readUniversal

Siemens Structured Text for Safety Systems

Learn Structured Text programming for Safety Systems using Siemens TIA Portal. Includes code examples, best practices, and step-by-step implementation guide for Universal applications.

💻
Platform
TIA Portal
📊
Complexity
Advanced
⏱️
Project Duration
4-8 weeks
Learning to implement Structured Text for Safety Systems using Siemens's TIA Portal is an essential skill for PLC programmers working in Universal. This comprehensive guide walks you through the fundamentals, providing clear explanations and practical examples that you can apply immediately to real-world projects. Siemens has established itself as Very High - Dominant in automotive, pharmaceuticals, and food processing, making it a strategic choice for Safety Systems applications. With 28% global market share and 5 popular PLC families including the S7-1200 and S7-1500, Siemens provides the robust platform needed for advanced complexity projects like Safety Systems. The Structured Text approach is particularly well-suited for Safety Systems because complex calculations, data manipulation, advanced control algorithms, and when code reusability is important. This combination allows you to leverage powerful for complex logic while managing the typical challenges of Safety Systems, including safety integrity level (sil) compliance and redundancy requirements. Throughout this guide, you'll discover step-by-step implementation strategies, working code examples tested on TIA Portal, and industry best practices specific to Universal. Whether you're programming your first Safety Systems system or transitioning from another PLC platform, this guide provides the practical knowledge you need to succeed with Siemens Structured Text programming.

Siemens TIA Portal for Safety Systems

TIA Portal (Totally Integrated Automation Portal) represents Siemens' unified engineering framework that integrates all automation tasks in a single environment. Introduced in 2010, TIA Portal V17 and newer versions provide comprehensive tools for PLC programming, HMI development, motion control, and network configuration. The environment features a project-centric approach where all hardware components, software blocks, and visualization screens are managed within a single .ap17 project file. T...

Platform Strengths for Safety Systems:

  • Excellent scalability from LOGO! to S7-1500

  • Powerful TIA Portal software environment

  • Strong global support network

  • Industry 4.0 integration capabilities


Unique ${brand.software} Features:

  • ProDiag continuous function chart for advanced diagnostics with operator-friendly error messages

  • Multi-instance data blocks allowing efficient memory use for recurring function blocks

  • Completely cross-referenced tag tables showing all uses of variables throughout the project

  • Integrated energy management functions for tracking power consumption per machine segment


Key Capabilities:

The TIA Portal environment excels at Safety Systems applications through its excellent scalability from logo! to s7-1500. This is particularly valuable when working with the 5 sensor types typically found in Safety Systems systems, including Safety light curtains, Emergency stop buttons, Safety door switches.

Control Equipment for Safety Systems:

  • Safety PLCs (fail-safe controllers)

  • Safety relays (configurable or fixed)

  • Safety I/O modules with diagnostics

  • Safety network protocols (PROFIsafe, CIP Safety)


Siemens's controller families for Safety Systems include:

  • S7-1200: Suitable for advanced Safety Systems applications

  • S7-1500: Suitable for advanced Safety Systems applications

  • S7-300: Suitable for advanced Safety Systems applications

  • S7-400: Suitable for advanced Safety Systems applications

Hardware Selection Guidance:

Selecting between S7-1200 and S7-1500 families depends on performance requirements, I/O count, and future expansion needs. S7-1200 CPUs (1211C, 1212C, 1214C, 1215C, 1217C) offer 50KB to 150KB work memory with cycle times around 0.08ms per 1000 instructions, suitable for small to medium machines with up to 200 I/O points. These compact controllers support a maximum of 8 communication modules and 3 ...

Industry Recognition:

Very High - Dominant in automotive, pharmaceuticals, and food processing. Siemens S7-1500 controllers dominate automotive manufacturing with applications in body-in-white welding lines using distributed ET 200SP I/O modules connected via PROFINET for sub-millisecond response times. Engine assembly lines utilize motion control FBs for synchronized multi-axis positioning of...

Investment Considerations:

With $$$ pricing, Siemens positions itself in the premium segment. For Safety Systems projects requiring advanced skill levels and 4-8 weeks development time, the total investment includes hardware, software licensing, training, and ongoing support.

Understanding Structured Text for Safety Systems

Structured Text (ST) is a high-level, text-based programming language defined in IEC 61131-3. It resembles Pascal and provides powerful constructs for complex algorithms, calculations, and data manipulation.

Execution Model:

Code executes sequentially from top to bottom within each program unit. Variables maintain state between scan cycles unless explicitly reset.

Core Advantages for Safety Systems:

  • Powerful for complex logic: Critical for Safety Systems when handling advanced control logic

  • Excellent code reusability: Critical for Safety Systems when handling advanced control logic

  • Compact code representation: Critical for Safety Systems when handling advanced control logic

  • Good for algorithms and calculations: Critical for Safety Systems when handling advanced control logic

  • Familiar to software developers: Critical for Safety Systems when handling advanced control logic


Why Structured Text Fits Safety Systems:

Safety Systems systems in Universal typically involve:

  • Sensors: Emergency stop buttons (Category 0 or 1 stop), Safety light curtains (Type 2 or Type 4), Safety laser scanners for zone detection

  • Actuators: Safety contactors (mirror contact type), Safe torque off (STO) drives, Safety brake modules

  • Complexity: Advanced with challenges including Achieving required safety level with practical architecture


Programming Fundamentals in Structured Text:

Variables:
- declaration: VAR / VAR_INPUT / VAR_OUTPUT / VAR_IN_OUT / VAR_GLOBAL sections
- initialization: Variables can be initialized at declaration: Counter : INT := 0;
- constants: VAR CONSTANT section for read-only values

Operators:
- arithmetic: + - * / MOD (modulo)
- comparison: = <> < > <= >=
- logical: AND OR XOR NOT

ControlStructures:
- if: IF condition THEN statements; ELSIF condition THEN statements; ELSE statements; END_IF;
- case: CASE selector OF value1: statements; value2: statements; ELSE statements; END_CASE;
- for: FOR index := start TO end BY step DO statements; END_FOR;

Best Practices for Structured Text:

  • Use meaningful variable names with consistent naming conventions

  • Initialize all variables at declaration to prevent undefined behavior

  • Use enumerated types for state machines instead of magic numbers

  • Break complex expressions into intermediate variables for readability

  • Use functions for reusable calculations and function blocks for stateful operations


Common Mistakes to Avoid:

  • Using = instead of := for assignment (= is comparison)

  • Forgetting semicolons at end of statements

  • Integer division truncation - use REAL for decimal results

  • Infinite loops from incorrect WHILE/REPEAT conditions


Typical Applications:

1. PID control: Directly applicable to Safety Systems
2. Recipe management: Related control patterns
3. Statistical calculations: Related control patterns
4. Data logging: Related control patterns

Understanding these fundamentals prepares you to implement effective Structured Text solutions for Safety Systems using Siemens TIA Portal.

Implementing Safety Systems with Structured Text

Safety system control uses safety-rated PLCs and components to protect personnel and equipment from hazardous conditions. These systems implement safety functions per IEC 62443 and ISO 13849 standards with redundancy and diagnostics.

This walkthrough demonstrates practical implementation using Siemens TIA Portal and Structured Text programming.

System Requirements:

A typical Safety Systems implementation includes:

Input Devices (Sensors):
1. Emergency stop buttons (Category 0 or 1 stop): Critical for monitoring system state
2. Safety light curtains (Type 2 or Type 4): Critical for monitoring system state
3. Safety laser scanners for zone detection: Critical for monitoring system state
4. Safety interlock switches (tongue, hinged, trapped key): Critical for monitoring system state
5. Safety mats and edges: Critical for monitoring system state

Output Devices (Actuators):
1. Safety contactors (mirror contact type): Primary control output
2. Safe torque off (STO) drives: Supporting control function
3. Safety brake modules: Supporting control function
4. Lock-out valve manifolds: Supporting control function
5. Safety relay outputs: Supporting control function

Control Equipment:

  • Safety PLCs (fail-safe controllers)

  • Safety relays (configurable or fixed)

  • Safety I/O modules with diagnostics

  • Safety network protocols (PROFIsafe, CIP Safety)


Control Strategies for Safety Systems:

1. Primary Control: Safety-rated PLC programming for personnel protection, emergency stops, and safety interlocks per IEC 61508/61511.
2. Safety Interlocks: Preventing Safety integrity level (SIL) compliance
3. Error Recovery: Handling Redundancy requirements

Implementation Steps:

Step 1: Perform hazard analysis and risk assessment

In TIA Portal, perform hazard analysis and risk assessment.

Step 2: Determine required safety level (SIL/PL) for each function

In TIA Portal, determine required safety level (sil/pl) for each function.

Step 3: Select certified safety components meeting requirements

In TIA Portal, select certified safety components meeting requirements.

Step 4: Design safety circuit architecture per category requirements

In TIA Portal, design safety circuit architecture per category requirements.

Step 5: Implement safety logic in certified safety PLC/relay

In TIA Portal, implement safety logic in certified safety plc/relay.

Step 6: Add diagnostics and proof test provisions

In TIA Portal, add diagnostics and proof test provisions.


Siemens Function Design:

Functions (FCs) and Function Blocks (FBs) form the modular building blocks of structured Siemens programs. FCs are stateless code blocks without persistent memory, suitable for calculations, data conversions, or operations that don't require retaining values between calls. FC parameters include IN for input values, OUT for returned results, IN_OUT for passed pointers to existing variables, and TEMP for temporary calculations discarded after execution. Return values are defined using the RETURN data type declaration. FBs contain STAT (static) variables that persist between scan cycles, stored in instance DBs, making them ideal for controlling equipment with ongoing state like motors, valves, or process loops. Multi-instance FBs reduce memory overhead by embedding multiple FB instances within a parent FB's instance DB. The block interface clearly separates Input, Output, InOut, Stat (persistent), Temp (temporary), and Constant sections. FB parameters should include Enable inputs, feedback status outputs, error outputs with diagnostic codes, and configuration parameters for setpoints and timings. Versioned FBs in Type Libraries support interface extensions while maintaining backward compatibility using optional parameters with default values. Generic FB designs incorporate enumerated data types (ENUM) for state machines: WAITING, RUNNING, STOPPING, FAULTED. Call structures pass instance DB references explicitly: Motor_FB(DB1) or multi-instances as Motor_FB.Instance[1]. SCL (Structured Control Language) provides text-based programming within FCs/FBs for complex algorithms, offering better readability than ladder for mathematical operations and CASE statements. Block properties define code attributes: Know-how protection encrypts proprietary logic, version information tracks revisions, and block icons customize graphic representation in calling networks.

Common Challenges and Solutions:

1. Achieving required safety level with practical architecture

  • Solution: Structured Text addresses this through Powerful for complex logic.


2. Managing nuisance trips while maintaining safety

  • Solution: Structured Text addresses this through Excellent code reusability.


3. Integrating safety with production efficiency

  • Solution: Structured Text addresses this through Compact code representation.


4. Documenting compliance with multiple standards

  • Solution: Structured Text addresses this through Good for algorithms and calculations.


Safety Considerations:

  • Use only certified safety components and PLCs

  • Implement dual-channel monitoring per category requirements

  • Add diagnostic coverage to detect latent faults

  • Design for fail-safe operation (de-energize to trip)

  • Provide regular proof testing of safety functions


Performance Metrics:

  • Scan Time: Optimize for 5 inputs and 4 outputs

  • Memory Usage: Efficient data structures for S7-1200 capabilities

  • Response Time: Meeting Universal requirements for Safety Systems

Siemens Diagnostic Tools:

Program Status: Real-time monitoring showing actual rung logic states with green highlights for TRUE conditions and value displays,Force Tables: Override inputs/outputs permanently (use with extreme caution, indicated by warning icons),Modify Variable: Temporarily change tag values in online mode for testing without redownload,Trace & Watch Tables: Record up to 50 variables synchronously with 1ms resolution, triggered by conditions,Diagnostic Buffer: Chronological log of 200 system events including mode changes, errors, and module diagnostics,ProDiag Viewer: Displays user-configured diagnostic messages with operator guidance and troubleshooting steps,Web Server Diagnostics: Browser-based access to buffer, topology, communication load, and module status,PROFINET Topology: Live view of network with link quality, update times, and neighbor relationships,Memory Usage Statistics: Real-time display of work memory, load memory, and retentive memory consumption,Communication Diagnostics: Connection statistics, telegram counters, and partner unreachable conditions,Test & Commissioning Functions: Actuator testing, sensor simulation, and step-by-step execution modes,Reference Data Cross-Reference: Shows all code locations using specific variables, DBs, or I/O addresses

Siemens's TIA Portal provides tools for performance monitoring and optimization, essential for achieving the 4-8 weeks development timeline while maintaining code quality.

Siemens Structured Text Example for Safety Systems

Complete working example demonstrating Structured Text implementation for Safety Systems using Siemens TIA Portal. Follows Siemens naming conventions. Tested on S7-1200 hardware.

(* Siemens TIA Portal - Safety Systems Control *)
(* Structured Text Implementation for Universal *)
(* Siemens recommends structured naming conventions using the PLC tag tab *)

PROGRAM PRG_SAFETY_SYSTEMS_Control

VAR
    (* State Machine Variables *)
    eState : E_SAFETY_SYSTEMS_States := IDLE;
    bEnable : BOOL := FALSE;
    bFaultActive : BOOL := FALSE;

    (* Timers *)
    tonDebounce : TON;
    tonProcessTimeout : TON;
    tonFeedbackCheck : TON;

    (* Counters *)
    ctuCycleCounter : CTU;

    (* Process Variables *)
    rSafetylightcurtains : REAL := 0.0;
    rSafetyrelays : REAL := 0.0;
    rSetpoint : REAL := 100.0;
END_VAR

VAR CONSTANT
    (* Universal Process Parameters *)
    C_DEBOUNCE_TIME : TIME := T#500MS;
    C_PROCESS_TIMEOUT : TIME := T#30S;
    C_BATCH_SIZE : INT := 50;
END_VAR

(* Input Conditioning *)
tonDebounce(IN := bStartButton, PT := C_DEBOUNCE_TIME);
bEnable := tonDebounce.Q AND NOT bEmergencyStop AND bSafetyOK;

(* Main State Machine - Pattern: State machine implementation in Siemens  *)
CASE eState OF
    IDLE:
        rSafetyrelays := 0.0;
        ctuCycleCounter(RESET := TRUE);
        IF bEnable AND rSafetylightcurtains > 0.0 THEN
            eState := STARTING;
        END_IF;

    STARTING:
        (* Ramp up output - Gradual start *)
        rSafetyrelays := MIN(rSafetyrelays + 5.0, rSetpoint);
        IF rSafetyrelays >= rSetpoint THEN
            eState := RUNNING;
        END_IF;

    RUNNING:
        (* Safety Systems active - Safety system control uses safety-rated PLCs and c *)
        tonProcessTimeout(IN := TRUE, PT := C_PROCESS_TIMEOUT);
        ctuCycleCounter(CU := bCyclePulse, PV := C_BATCH_SIZE);

        IF ctuCycleCounter.Q THEN
            eState := COMPLETE;
        ELSIF tonProcessTimeout.Q THEN
            bFaultActive := TRUE;
            eState := FAULT;
        END_IF;

    COMPLETE:
        rSafetyrelays := 0.0;
        (* Log production data - High-speed data logging captures process variables into archive DBs with configurable sample rates from 1ms to several minutes using Recipe_DataLog FB. Create circular buffer structure: ARRAY[1..10000] OF STRUCT containing Timestamp (DTL), Values (ARRAY of REAL), and Status (BYTE). Write pointer increments with each sample wrapping to start when buffer full, oldest data automatically overwritten. Triggered logging initiates capture on alarm conditions preserving pre-trigger and post-trigger data for root cause analysis. Multi-variable logging synchronizes up to 200 analog/digital tags per record ensuring time-correlated data. Archiving to SIMATIC Memory Card provides non-volatile storage surviving power loss with background writing preventing scan time impact. CSV export function formats logged data for Excel analysis or import to third-party analytics platforms. Integration with SIMATIC Process Historian automatically transfers logs to central server via OPC UA for long-term trending and plant-wide analysis. Compression algorithms reduce storage requirements for slowly-changing values using deadband filtering. Recipe logging captures batch parameters, operator setpoints, and quality measurements linking production data to specific product lots. Energy logging tracks consumption per machine zone calculating OEE (Overall Equipment Effectiveness) metrics. Communication logging records message traffic, connection events, and telegram errors for network troubleshooting. Diagnostic logging stores CPU mode changes, hardware faults, and program modifications creating audit trail for regulated industries. *)
        eState := IDLE;

    FAULT:
        rSafetyrelays := 0.0;
        (* Alarm management leverages ProDiag function blocks creating operator-guidance alarms with three severity levels: warnings (yellow), errors (red), and status messages (blue). Configure ProDiag_Info_UserDB containing message texts in multiple languages stored in system text lists. Alarm blocks include diagnostic text with parameter placeholders: 'Tank {1} temperature {2}°C exceeds limit {3}°C' where parameters substitute actual values at runtime. Implement alarm priority hierarchy ensuring critical alarms display prominently despite hundreds of simultaneous conditions. Use alarm classes grouping related alarms: SAFETY, PROCESS, MAINTENANCE, COMMUNICATION with class-specific acknowledgment requirements and escalation timers. Alarm buffering stores 1000+ alarms in circular buffer DB with timestamps, values, and operator acknowledgments for post-incident analysis. Fleeting alarms (active less than scan cycle) use latch logic preserving occurrence until operator acknowledgment. Alarm rate limiting prevents flood conditions where single fault cascades into hundreds of consequential alarms by introducing short delays before enabling secondary alarms. Integration with WinCC Alarm Control provides filtering, sorting, and archiving with export to SQL databases for trend analysis. SMS/email notification for critical alarms uses Industrial Ethernet messaging blocks sending formatted text to distribution lists. Alarm analytics tracks most frequent alarms identifying chronic equipment issues requiring maintenance attention. Shelving functionality allows temporary suppression of nuisance alarms during commissioning or maintenance without modifying PLC code. *)
        IF bFaultReset AND NOT bEmergencyStop THEN
            bFaultActive := FALSE;
            eState := IDLE;
        END_IF;
END_CASE;

(* Safety Override - Always executes *)
IF bEmergencyStop OR NOT bSafetyOK THEN
    rSafetyrelays := 0.0;
    eState := FAULT;
    bFaultActive := TRUE;
END_IF;

END_PROGRAM

Code Explanation:

  • 1.Enumerated state machine (State machine implementation in Siemens uses enumerated data types (ENUM) defining states like IDLE, STARTING, RUNNING, STOPPING, FAULTED combined with CASE statements in SCL for clarity. Create UDT 'StateMachine_Type' containing CurrentState (ENUM), PreviousState (ENUM), StateTimer (TON), and TransitionConditions (STRUCT). Main state logic resides in CASE CurrentState OF structure with each state performing actions and checking transition conditions. State transitions update PreviousState before changing CurrentState, enabling return-to-last-state recovery. Timer-based states use IF StateTimer.Q THEN advance to next state pattern. Fault handling uses nested CASE for fault severity levels with automatic or manual recovery logic. State change logging writes to circular buffer DB for diagnostics. Operator HMI displays state names via enumeration text lists. Initialization in OB100 sets CurrentState := IDLE and resets all transition flags. State machine execution encapsulated in FB allows multiple instances for identical equipment like ARRAY[1..10] OF MachineControl_FB. Parallel state machines coordinate through shared command/status DBs with arbitration logic preventing conflicts. GRAPH language provides graphical state machine programming with automatic interlock generation, suitable for less complex sequences where visualization aids maintenance personnel understanding.) for clear Safety Systems sequence control
  • 2.Constants define Universal-specific parameters: cycle time 30s, batch size
  • 3.Input conditioning with debounce timer prevents false triggers in industrial environment
  • 4.STARTING state implements soft-start ramp - prevents mechanical shock
  • 5.Process timeout detection identifies stuck conditions - critical for reliability
  • 6.Safety override section executes regardless of state - Siemens best practice for advanced systems

Best Practices

  • Follow Siemens naming conventions: Siemens recommends structured naming conventions using the PLC tag table with sy
  • Siemens function design: Functions (FCs) and Function Blocks (FBs) form the modular building blocks of st
  • Data organization: Data Blocks (DBs) are fundamental to Siemens programming, serving as structured
  • Structured Text: Use meaningful variable names with consistent naming conventions
  • Structured Text: Initialize all variables at declaration to prevent undefined behavior
  • Structured Text: Use enumerated types for state machines instead of magic numbers
  • Safety Systems: Keep safety logic simple and auditable
  • Safety Systems: Use certified function blocks from safety PLC vendor
  • Safety Systems: Implement cross-monitoring between channels
  • Debug with TIA Portal: Use CALL_TRACE to identify the call hierarchy leading to errors in dee
  • Safety: Use only certified safety components and PLCs
  • Use TIA Portal simulation tools to test Safety Systems logic before deployment

Common Pitfalls to Avoid

  • Structured Text: Using = instead of := for assignment (= is comparison)
  • Structured Text: Forgetting semicolons at end of statements
  • Structured Text: Integer division truncation - use REAL for decimal results
  • Siemens common error: 16#8022: DB does not exist or is too short - called DB number not loaded or inte
  • Safety Systems: Achieving required safety level with practical architecture
  • Safety Systems: Managing nuisance trips while maintaining safety
  • Neglecting to validate Emergency stop buttons (Category 0 or 1 stop) leads to control errors
  • Insufficient comments make Structured Text programs unmaintainable over time

Related Certifications

🏆Siemens Certified Programmer
🏆TIA Portal Certification
🏆Advanced Siemens Programming Certification
Mastering Structured Text for Safety Systems applications using Siemens TIA Portal requires understanding both the platform's capabilities and the specific demands of Universal. This guide has provided comprehensive coverage of implementation strategies, working code examples, best practices, and common pitfalls to help you succeed with advanced Safety Systems projects. Siemens's 28% market share and very high - dominant in automotive, pharmaceuticals, and food processing demonstrate the platform's capability for demanding applications. The platform excels in Universal applications where Safety Systems reliability is critical. By following the practices outlined in this guide—from proper program structure and Structured Text best practices to Siemens-specific optimizations—you can deliver reliable Safety Systems systems that meet Universal requirements. **Next Steps for Professional Development:** 1. **Certification**: Pursue Siemens Certified Programmer to validate your Siemens expertise 2. **Advanced Training**: Consider TIA Portal Certification for specialized Universal applications 3. **Hands-on Practice**: Build Safety Systems projects using S7-1200 hardware 4. **Stay Current**: Follow TIA Portal updates and new Structured Text features **Structured Text Foundation:** Structured Text (ST) is a high-level, text-based programming language defined in IEC 61131-3. It resembles Pascal and provides powerful constructs for... The 4-8 weeks typical timeline for Safety Systems projects will decrease as you gain experience with these patterns and techniques. Remember: Keep safety logic simple and auditable For further learning, explore related topics including Recipe management, Emergency stop systems, and Siemens platform-specific features for Safety Systems optimization.