Mitsubishi GX Works2/GX Works3 for Motor Control
GX Works3 represents Mitsubishi's latest engineering software supporting the MELSEC iQ-R and iQ-F series controllers, while GX Works2 remains in use for legacy Q, L, and FX5 series PLCs. The programming environment features a project-based structure organizing programs into multiple POUs (Program Organization Units) including main programs, function blocks, and structured projects. Unlike Western PLC manufacturers, Mitsubishi supports both device-addressed programming (X0, Y0, M0, D0) and label-...
Platform Strengths for Motor Control:
- Excellent price-to-performance ratio
- Fast processing speeds
- Compact form factors
- Strong support in Asia-Pacific
Unique ${brand.software} Features:
- Simple Motion module integration with motion SFC (Sequential Function Chart) programming eliminating complex positioning code
- RD.DPR instruction providing direct device programming without software transfer for recipe adjustments
- Melsoft Navigator project management integrating multiple controllers, HMIs, and network devices in unified environment
- Multiple CPU configuration allowing up to 4 CPUs in single rack sharing memory via high-speed backplane
Key Capabilities:
The GX Works2/GX Works3 environment excels at Motor Control applications through its excellent price-to-performance ratio. This is particularly valuable when working with the 5 sensor types typically found in Motor Control systems, including Current sensors, Vibration sensors, Temperature sensors.
Control Equipment for Motor Control:
- Motor control centers (MCCs)
- AC induction motors (NEMA/IEC frame)
- Synchronous motors for high efficiency
- DC motors for precise speed control
Mitsubishi's controller families for Motor Control include:
- FX5: Suitable for beginner to intermediate Motor Control applications
- iQ-R: Suitable for beginner to intermediate Motor Control applications
- iQ-F: Suitable for beginner to intermediate Motor Control applications
- Q Series: Suitable for beginner to intermediate Motor Control applications
Hardware Selection Guidance:
Mitsubishi offers several controller families addressing different performance and application requirements. The MELSEC iQ-R series represents the flagship product line with processing speeds as fast as 0.98ns per basic instruction supporting applications from small machines to complex automated systems. R04CPU provides 40K steps program capacity and 256K words data memory suitable for compact mac...
Industry Recognition:
High - Popular in electronics manufacturing, packaging, and assembly. Mitsubishi PLCs serve Japanese and Asian automotive manufacturers with MELSEC iQ-R controllers managing assembly line transfers, welding automation, and quality inspection systems. Body assembly lines use multiple CPU configurations (up to 4 CPUs in single rack) distributing control: CPU1 handles co...
Investment Considerations:
With $$ pricing, Mitsubishi positions itself in the mid-range segment. For Motor Control projects requiring beginner skill levels and 1-3 weeks development time, the total investment includes hardware, software licensing, training, and ongoing support.
Understanding Sequential Function Charts (SFC) for Motor Control
Sequential Function Chart (SFC) is a graphical language for programming sequential processes. It models systems as a series of steps connected by transitions, ideal for batch processes and machine sequences.
Execution Model:
Only active steps execute their actions. Transitions define conditions for moving between steps. Multiple steps can be active simultaneously in parallel branches.
Core Advantages for Motor Control:
- Perfect for sequential processes: Critical for Motor Control when handling beginner to intermediate control logic
- Clear visualization of process flow: Critical for Motor Control when handling beginner to intermediate control logic
- Easy to understand process steps: Critical for Motor Control when handling beginner to intermediate control logic
- Good for batch operations: Critical for Motor Control when handling beginner to intermediate control logic
- Simplifies complex sequences: Critical for Motor Control when handling beginner to intermediate control logic
Why Sequential Function Charts (SFC) Fits Motor Control:
Motor Control systems in Industrial Manufacturing typically involve:
- Sensors: Current transformers for motor current monitoring, RTD or thermocouple for motor winding temperature, Vibration sensors for bearing monitoring
- Actuators: Contactors for direct-on-line starting, Soft starters for reduced voltage starting, Variable frequency drives for speed control
- Complexity: Beginner to Intermediate with challenges including Managing starting current within supply limits
Programming Fundamentals in Sequential Function Charts (SFC):
Steps:
- initialStep: Double-bordered box - starting point of sequence, active on program start
- normalStep: Single-bordered box - becomes active when preceding transition fires
- actions: Associated code that executes while step is active
Transitions:
- condition: Boolean expression that must be TRUE to advance
- firing: Transition fires when preceding step is active AND condition is TRUE
- priority: In selective branches, transitions are evaluated in defined order
ActionQualifiers:
- N: Non-stored - executes while step is active
- S: Set - sets output TRUE on step entry, remains TRUE
- R: Reset - sets output FALSE on step entry
Best Practices for Sequential Function Charts (SFC):
- Start with a clear process flow diagram before implementing SFC
- Use descriptive step names indicating what happens (e.g., Filling, Heating)
- Keep transition conditions simple - complex logic goes in action code
- Implement timeout transitions to prevent stuck sequences
- Always provide a path back to initial step for reset/restart
Common Mistakes to Avoid:
- Forgetting to include stop/abort transitions for emergency handling
- Creating deadlocks where no transition can fire
- Not handling the case where transition conditions never become TRUE
- Using S (Set) actions without corresponding R (Reset) actions
Typical Applications:
1. Bottle filling: Directly applicable to Motor Control
2. Assembly sequences: Related control patterns
3. Material handling: Related control patterns
4. Batch mixing: Related control patterns
Understanding these fundamentals prepares you to implement effective Sequential Function Charts (SFC) solutions for Motor Control using Mitsubishi GX Works2/GX Works3.
Implementing Motor Control with Sequential Function Charts (SFC)
Motor control systems use PLCs to start, stop, and regulate electric motors in industrial applications. These systems provide protection, speed control, and coordination for motors ranging from fractional horsepower to thousands of horsepower.
This walkthrough demonstrates practical implementation using Mitsubishi GX Works2/GX Works3 and Sequential Function Charts (SFC) programming.
System Requirements:
A typical Motor Control implementation includes:
Input Devices (Sensors):
1. Current transformers for motor current monitoring: Critical for monitoring system state
2. RTD or thermocouple for motor winding temperature: Critical for monitoring system state
3. Vibration sensors for bearing monitoring: Critical for monitoring system state
4. Speed encoders or tachometers: Critical for monitoring system state
5. Torque sensors for load monitoring: Critical for monitoring system state
Output Devices (Actuators):
1. Contactors for direct-on-line starting: Primary control output
2. Soft starters for reduced voltage starting: Supporting control function
3. Variable frequency drives for speed control: Supporting control function
4. Brakes (mechanical or dynamic): Supporting control function
5. Starters (star-delta, autotransformer): Supporting control function
Control Equipment:
- Motor control centers (MCCs)
- AC induction motors (NEMA/IEC frame)
- Synchronous motors for high efficiency
- DC motors for precise speed control
Control Strategies for Motor Control:
1. Primary Control: Industrial motor control using PLCs for start/stop, speed control, and protection of electric motors.
2. Safety Interlocks: Preventing Soft start implementation
3. Error Recovery: Handling Overload protection
Implementation Steps:
Step 1: Calculate motor starting current and verify supply capacity
In GX Works2/GX Works3, calculate motor starting current and verify supply capacity.
Step 2: Select starting method based on motor size and load requirements
In GX Works2/GX Works3, select starting method based on motor size and load requirements.
Step 3: Configure motor protection with correct thermal curve
In GX Works2/GX Works3, configure motor protection with correct thermal curve.
Step 4: Implement control logic for start/stop with proper interlocks
In GX Works2/GX Works3, implement control logic for start/stop with proper interlocks.
Step 5: Add speed control loop if VFD is used
In GX Works2/GX Works3, add speed control loop if vfd is used.
Step 6: Configure acceleration and deceleration ramps
In GX Works2/GX Works3, configure acceleration and deceleration ramps.
Mitsubishi Function Design:
Function block (FB) programming in Mitsubishi creates reusable logic modules with defined interfaces encapsulating complexity. FB definition includes input variables (VAR_INPUT), output variables (VAR_OUTPUT), internal variables (VAR), and retained variables (VAR_RETAIN) maintaining values between calls. Creating motor control FB: inputs include Start_Cmd (BOOL), Stop_Cmd (BOOL), Speed_SP (INT), outputs include Running_Sts (BOOL), Fault_Sts (BOOL), Actual_Speed (INT), internal variables store timers, state machine stages, and diagnostic counters. FB instantiation creates instance: Motor1 (Motor_FB) with unique variable storage, allowing multiple instances Motor1, Motor2, Motor3 controlling different motors using same logic. Array of FB instances: Motors : ARRAY[1..10] OF Motor_FB accessed as Motors[3].Running_Sts checking status of motor 3. Standard function (FUN) differs from FB by lacking internal memory, suitable for calculations or conversions: Temp_Conversion_FUN(Celsius) returns Fahrenheit without retaining historical data. Structured text programming within FBs/FUNs provides clearer logic for complex algorithms compared to ladder: IF-THEN-ELSIF-ELSE structures, FOR loops, CASE statements expressing intent more directly than ladder equivalents. EN/ENO functionality enables conditional execution: EN (enable input) controls whether FB executes, ENO (enable output) indicates successful execution detecting errors within block. Library management exports FBs to library files (.glib) shared across projects and engineering teams, versioned to track modifications and ensure consistency. The intelligent function module (IFM) templates provide pre-built FBs for common applications: PID control, analog scaling, motion positioning reducing development time and providing tested reliable code. Simulation mode tests FB logic without hardware, allowing desktop development and unit testing before commissioning. Protection functionality encrypts FB contents preventing unauthorized viewing or modification, useful for proprietary algorithms or OEM machine builders distributing programs to end users.
Common Challenges and Solutions:
1. Managing starting current within supply limits
- Solution: Sequential Function Charts (SFC) addresses this through Perfect for sequential processes.
2. Coordinating acceleration with driven load requirements
- Solution: Sequential Function Charts (SFC) addresses this through Clear visualization of process flow.
3. Protecting motors from frequent starting (thermal cycling)
- Solution: Sequential Function Charts (SFC) addresses this through Easy to understand process steps.
4. Handling regenerative energy during deceleration
- Solution: Sequential Function Charts (SFC) addresses this through Good for batch operations.
Safety Considerations:
- Proper machine guarding for rotating equipment
- Emergency stop functionality with safe torque off
- Lockout/tagout provisions for maintenance
- Arc flash protection and PPE requirements
- Proper grounding and bonding
Performance Metrics:
- Scan Time: Optimize for 5 inputs and 5 outputs
- Memory Usage: Efficient data structures for FX5 capabilities
- Response Time: Meeting Industrial Manufacturing requirements for Motor Control
Mitsubishi Diagnostic Tools:
Device memory monitor: Real-time table displaying current values for X, Y, M, D devices with force capability,Entry data monitor: Shows actual rung logic states with contact ON/OFF indication during program execution,Device test: Manually control outputs and set internal relays for wiring verification without program influence,Intelligent module diagnostics: Buffer memory display showing module status, error codes, and configuration,Scan time monitor: Displays current, maximum, and minimum scan times identifying performance issues,Error code history: Chronological log of system errors, module faults, and CPU events with timestamps,CC-Link/network diagnostics: Visual network status showing connected stations, errors, and communication statistics,SD card operation log: Records all SD card read/write operations, file transfers, and access timestamps,Remote diagnosis via Ethernet: Connect GX Works over network for monitoring and troubleshooting without local access,Sampling trace: Records device value changes over time with trigger conditions for intermittent fault analysis,System monitor: Displays CPU load, memory usage, and battery status for predictive maintenance,Safety diagnosis (safety CPU): Dedicated diagnostics for safety I/O discrepancy detection and emergency stop chain status
Mitsubishi's GX Works2/GX Works3 provides tools for performance monitoring and optimization, essential for achieving the 1-3 weeks development timeline while maintaining code quality.
Mitsubishi Sequential Function Charts (SFC) Example for Motor Control
Complete working example demonstrating Sequential Function Charts (SFC) implementation for Motor Control using Mitsubishi GX Works2/GX Works3. Follows Mitsubishi naming conventions. Tested on FX5 hardware.
// Mitsubishi GX Works2/GX Works3 - Motor Control Control
// Sequential Function Charts (SFC) Implementation for Industrial Manufacturing
// Mitsubishi programming supports both traditional device addr
// ============================================
// Variable Declarations
// ============================================
VAR
bEnable : BOOL := FALSE;
bEmergencyStop : BOOL := FALSE;
rCurrentsensors : REAL;
rMotorstarters : REAL;
END_VAR
// ============================================
// Input Conditioning - Current transformers for motor current monitoring
// ============================================
// Standard input processing
IF rCurrentsensors > 0.0 THEN
bEnable := TRUE;
END_IF;
// ============================================
// Safety Interlock - Proper machine guarding for rotating equipment
// ============================================
IF bEmergencyStop THEN
rMotorstarters := 0.0;
bEnable := FALSE;
END_IF;
// ============================================
// Main Motor Control Control Logic
// ============================================
IF bEnable AND NOT bEmergencyStop THEN
// Motor control systems use PLCs to start, stop, and regulate
rMotorstarters := rCurrentsensors * 1.0;
// Process monitoring
// Add specific control logic here
ELSE
rMotorstarters := 0.0;
END_IF;Code Explanation:
- 1.Sequential Function Charts (SFC) structure optimized for Motor Control in Industrial Manufacturing applications
- 2.Input conditioning handles Current transformers for motor current monitoring signals
- 3.Safety interlock ensures Proper machine guarding for rotating equipment always takes priority
- 4.Main control implements Motor control systems use PLCs to start,
- 5.Code runs every scan cycle on FX5 (typically 5-20ms)
Best Practices
- ✓Follow Mitsubishi naming conventions: Mitsubishi programming supports both traditional device addressing (M0, D100, X1
- ✓Mitsubishi function design: Function block (FB) programming in Mitsubishi creates reusable logic modules wit
- ✓Data organization: Mitsubishi uses file registers (R devices) and structured data in function block
- ✓Sequential Function Charts (SFC): Start with a clear process flow diagram before implementing SFC
- ✓Sequential Function Charts (SFC): Use descriptive step names indicating what happens (e.g., Filling, Heating)
- ✓Sequential Function Charts (SFC): Keep transition conditions simple - complex logic goes in action code
- ✓Motor Control: Verify motor running with current or speed feedback, not just contactor status
- ✓Motor Control: Implement minimum off time between starts for motor cooling
- ✓Motor Control: Add phase loss and phase reversal protection
- ✓Debug with GX Works2/GX Works3: Use sampling trace to capture high-speed events occurring faster than
- ✓Safety: Proper machine guarding for rotating equipment
- ✓Use GX Works2/GX Works3 simulation tools to test Motor Control logic before deployment
Common Pitfalls to Avoid
- ⚠Sequential Function Charts (SFC): Forgetting to include stop/abort transitions for emergency handling
- ⚠Sequential Function Charts (SFC): Creating deadlocks where no transition can fire
- ⚠Sequential Function Charts (SFC): Not handling the case where transition conditions never become TRUE
- ⚠Mitsubishi common error: Error 2110: Illegal device specified - accessing device outside configured range
- ⚠Motor Control: Managing starting current within supply limits
- ⚠Motor Control: Coordinating acceleration with driven load requirements
- ⚠Neglecting to validate Current transformers for motor current monitoring leads to control errors
- ⚠Insufficient comments make Sequential Function Charts (SFC) programs unmaintainable over time