Intermediate15 min readMaterial Handling

Siemens Sequential Function Charts (SFC) for Conveyor Systems

Learn Sequential Function Charts (SFC) programming for Conveyor Systems using Siemens TIA Portal. Includes code examples, best practices, and step-by-step implementation guide for Material Handling applications.

💻
Platform
TIA Portal
📊
Complexity
Beginner to Intermediate
⏱️
Project Duration
1-3 weeks
Learning to implement Sequential Function Charts (SFC) for Conveyor Systems using Siemens's TIA Portal is an essential skill for PLC programmers working in Material Handling. This comprehensive guide walks you through the fundamentals, providing clear explanations and practical examples that you can apply immediately to real-world projects. Siemens has established itself as Very High - Dominant in automotive, pharmaceuticals, and food processing, making it a strategic choice for Conveyor Systems applications. With 28% global market share and 5 popular PLC families including the S7-1200 and S7-1500, Siemens provides the robust platform needed for beginner to intermediate complexity projects like Conveyor Systems. The Sequential Function Charts (SFC) approach is particularly well-suited for Conveyor Systems because batch processes, step-by-step operations, state machines, and complex sequential control. This combination allows you to leverage perfect for sequential processes while managing the typical challenges of Conveyor Systems, including product tracking and speed synchronization. Throughout this guide, you'll discover step-by-step implementation strategies, working code examples tested on TIA Portal, and industry best practices specific to Material Handling. Whether you're programming your first Conveyor Systems system or transitioning from another PLC platform, this guide provides the practical knowledge you need to succeed with Siemens Sequential Function Charts (SFC) programming.

Siemens TIA Portal for Conveyor Systems

TIA Portal (Totally Integrated Automation Portal) represents Siemens' unified engineering framework that integrates all automation tasks in a single environment. Introduced in 2010, TIA Portal V17 and newer versions provide comprehensive tools for PLC programming, HMI development, motion control, and network configuration. The environment features a project-centric approach where all hardware components, software blocks, and visualization screens are managed within a single .ap17 project file. T...

Platform Strengths for Conveyor Systems:

  • Excellent scalability from LOGO! to S7-1500

  • Powerful TIA Portal software environment

  • Strong global support network

  • Industry 4.0 integration capabilities


Unique ${brand.software} Features:

  • ProDiag continuous function chart for advanced diagnostics with operator-friendly error messages

  • Multi-instance data blocks allowing efficient memory use for recurring function blocks

  • Completely cross-referenced tag tables showing all uses of variables throughout the project

  • Integrated energy management functions for tracking power consumption per machine segment


Key Capabilities:

The TIA Portal environment excels at Conveyor Systems applications through its excellent scalability from logo! to s7-1500. This is particularly valuable when working with the 5 sensor types typically found in Conveyor Systems systems, including Photoelectric sensors, Proximity sensors, Encoders.

Control Equipment for Conveyor Systems:

  • Belt conveyors with motor-driven pulleys

  • Roller conveyors (powered and gravity)

  • Modular plastic belt conveyors

  • Accumulation conveyors (zero-pressure, minimum-pressure)


Siemens's controller families for Conveyor Systems include:

  • S7-1200: Suitable for beginner to intermediate Conveyor Systems applications

  • S7-1500: Suitable for beginner to intermediate Conveyor Systems applications

  • S7-300: Suitable for beginner to intermediate Conveyor Systems applications

  • S7-400: Suitable for beginner to intermediate Conveyor Systems applications

Hardware Selection Guidance:

Selecting between S7-1200 and S7-1500 families depends on performance requirements, I/O count, and future expansion needs. S7-1200 CPUs (1211C, 1212C, 1214C, 1215C, 1217C) offer 50KB to 150KB work memory with cycle times around 0.08ms per 1000 instructions, suitable for small to medium machines with up to 200 I/O points. These compact controllers support a maximum of 8 communication modules and 3 ...

Industry Recognition:

Very High - Dominant in automotive, pharmaceuticals, and food processing. Siemens S7-1500 controllers dominate automotive manufacturing with applications in body-in-white welding lines using distributed ET 200SP I/O modules connected via PROFINET for sub-millisecond response times. Engine assembly lines utilize motion control FBs for synchronized multi-axis positioning of...

Investment Considerations:

With $$$ pricing, Siemens positions itself in the premium segment. For Conveyor Systems projects requiring beginner skill levels and 1-3 weeks development time, the total investment includes hardware, software licensing, training, and ongoing support.

Understanding Sequential Function Charts (SFC) for Conveyor Systems

Sequential Function Chart (SFC) is a graphical language for programming sequential processes. It models systems as a series of steps connected by transitions, ideal for batch processes and machine sequences.

Execution Model:

Only active steps execute their actions. Transitions define conditions for moving between steps. Multiple steps can be active simultaneously in parallel branches.

Core Advantages for Conveyor Systems:

  • Perfect for sequential processes: Critical for Conveyor Systems when handling beginner to intermediate control logic

  • Clear visualization of process flow: Critical for Conveyor Systems when handling beginner to intermediate control logic

  • Easy to understand process steps: Critical for Conveyor Systems when handling beginner to intermediate control logic

  • Good for batch operations: Critical for Conveyor Systems when handling beginner to intermediate control logic

  • Simplifies complex sequences: Critical for Conveyor Systems when handling beginner to intermediate control logic


Why Sequential Function Charts (SFC) Fits Conveyor Systems:

Conveyor Systems systems in Material Handling typically involve:

  • Sensors: Photoelectric sensors for product detection and zone occupancy, Proximity sensors for metal product detection, Encoders for speed feedback and position tracking

  • Actuators: AC motors with VFDs for variable speed control, Motor starters for fixed-speed sections, Pneumatic diverters and pushers for sorting

  • Complexity: Beginner to Intermediate with challenges including Maintaining product tracking through merges and diverters


Programming Fundamentals in Sequential Function Charts (SFC):

Steps:
- initialStep: Double-bordered box - starting point of sequence, active on program start
- normalStep: Single-bordered box - becomes active when preceding transition fires
- actions: Associated code that executes while step is active

Transitions:
- condition: Boolean expression that must be TRUE to advance
- firing: Transition fires when preceding step is active AND condition is TRUE
- priority: In selective branches, transitions are evaluated in defined order

ActionQualifiers:
- N: Non-stored - executes while step is active
- S: Set - sets output TRUE on step entry, remains TRUE
- R: Reset - sets output FALSE on step entry

Best Practices for Sequential Function Charts (SFC):

  • Start with a clear process flow diagram before implementing SFC

  • Use descriptive step names indicating what happens (e.g., Filling, Heating)

  • Keep transition conditions simple - complex logic goes in action code

  • Implement timeout transitions to prevent stuck sequences

  • Always provide a path back to initial step for reset/restart


Common Mistakes to Avoid:

  • Forgetting to include stop/abort transitions for emergency handling

  • Creating deadlocks where no transition can fire

  • Not handling the case where transition conditions never become TRUE

  • Using S (Set) actions without corresponding R (Reset) actions


Typical Applications:

1. Bottle filling: Directly applicable to Conveyor Systems
2. Assembly sequences: Related control patterns
3. Material handling: Related control patterns
4. Batch mixing: Related control patterns

Understanding these fundamentals prepares you to implement effective Sequential Function Charts (SFC) solutions for Conveyor Systems using Siemens TIA Portal.

Implementing Conveyor Systems with Sequential Function Charts (SFC)

Conveyor control systems manage the movement of materials through manufacturing and distribution facilities. PLCs coordinate multiple conveyor sections, handle product tracking, manage zones and accumulation, and interface with other automated equipment.

This walkthrough demonstrates practical implementation using Siemens TIA Portal and Sequential Function Charts (SFC) programming.

System Requirements:

A typical Conveyor Systems implementation includes:

Input Devices (Sensors):
1. Photoelectric sensors for product detection and zone occupancy: Critical for monitoring system state
2. Proximity sensors for metal product detection: Critical for monitoring system state
3. Encoders for speed feedback and position tracking: Critical for monitoring system state
4. Barcode readers and RFID scanners for product identification: Critical for monitoring system state
5. Weight scales for product verification: Critical for monitoring system state

Output Devices (Actuators):
1. AC motors with VFDs for variable speed control: Primary control output
2. Motor starters for fixed-speed sections: Supporting control function
3. Pneumatic diverters and pushers for sorting: Supporting control function
4. Servo drives for precision positioning: Supporting control function
5. Brake modules for controlled stops: Supporting control function

Control Equipment:

  • Belt conveyors with motor-driven pulleys

  • Roller conveyors (powered and gravity)

  • Modular plastic belt conveyors

  • Accumulation conveyors (zero-pressure, minimum-pressure)


Control Strategies for Conveyor Systems:

1. Primary Control: Automated material handling using conveyor belts with PLC control for sorting, routing, and tracking products.
2. Safety Interlocks: Preventing Product tracking
3. Error Recovery: Handling Speed synchronization

Implementation Steps:

Step 1: Map conveyor layout with all zones, sensors, and motor locations

In TIA Portal, map conveyor layout with all zones, sensors, and motor locations.

Step 2: Define product types, sizes, weights, and handling requirements

In TIA Portal, define product types, sizes, weights, and handling requirements.

Step 3: Create tracking data structure with product ID, location, and destination

In TIA Portal, create tracking data structure with product id, location, and destination.

Step 4: Implement zone control logic with proper handshaking between zones

In TIA Portal, implement zone control logic with proper handshaking between zones.

Step 5: Add product tracking using sensor events and encoder feedback

In TIA Portal, add product tracking using sensor events and encoder feedback.

Step 6: Program diverter/sorter logic based on product routing data

In TIA Portal, program diverter/sorter logic based on product routing data.


Siemens Function Design:

Functions (FCs) and Function Blocks (FBs) form the modular building blocks of structured Siemens programs. FCs are stateless code blocks without persistent memory, suitable for calculations, data conversions, or operations that don't require retaining values between calls. FC parameters include IN for input values, OUT for returned results, IN_OUT for passed pointers to existing variables, and TEMP for temporary calculations discarded after execution. Return values are defined using the RETURN data type declaration. FBs contain STAT (static) variables that persist between scan cycles, stored in instance DBs, making them ideal for controlling equipment with ongoing state like motors, valves, or process loops. Multi-instance FBs reduce memory overhead by embedding multiple FB instances within a parent FB's instance DB. The block interface clearly separates Input, Output, InOut, Stat (persistent), Temp (temporary), and Constant sections. FB parameters should include Enable inputs, feedback status outputs, error outputs with diagnostic codes, and configuration parameters for setpoints and timings. Versioned FBs in Type Libraries support interface extensions while maintaining backward compatibility using optional parameters with default values. Generic FB designs incorporate enumerated data types (ENUM) for state machines: WAITING, RUNNING, STOPPING, FAULTED. Call structures pass instance DB references explicitly: Motor_FB(DB1) or multi-instances as Motor_FB.Instance[1]. SCL (Structured Control Language) provides text-based programming within FCs/FBs for complex algorithms, offering better readability than ladder for mathematical operations and CASE statements. Block properties define code attributes: Know-how protection encrypts proprietary logic, version information tracks revisions, and block icons customize graphic representation in calling networks.

Common Challenges and Solutions:

1. Maintaining product tracking through merges and diverters

  • Solution: Sequential Function Charts (SFC) addresses this through Perfect for sequential processes.


2. Handling products of varying sizes and weights

  • Solution: Sequential Function Charts (SFC) addresses this through Clear visualization of process flow.


3. Preventing jams at transitions and merge points

  • Solution: Sequential Function Charts (SFC) addresses this through Easy to understand process steps.


4. Coordinating speeds between connected conveyors

  • Solution: Sequential Function Charts (SFC) addresses this through Good for batch operations.


Safety Considerations:

  • E-stop functionality with proper zone isolation

  • Pull-cord emergency stops along conveyor length

  • Guard interlocking at all pinch points

  • Speed monitoring to prevent runaway conditions

  • Light curtains at operator access points


Performance Metrics:

  • Scan Time: Optimize for 5 inputs and 5 outputs

  • Memory Usage: Efficient data structures for S7-1200 capabilities

  • Response Time: Meeting Material Handling requirements for Conveyor Systems

Siemens Diagnostic Tools:

Program Status: Real-time monitoring showing actual rung logic states with green highlights for TRUE conditions and value displays,Force Tables: Override inputs/outputs permanently (use with extreme caution, indicated by warning icons),Modify Variable: Temporarily change tag values in online mode for testing without redownload,Trace & Watch Tables: Record up to 50 variables synchronously with 1ms resolution, triggered by conditions,Diagnostic Buffer: Chronological log of 200 system events including mode changes, errors, and module diagnostics,ProDiag Viewer: Displays user-configured diagnostic messages with operator guidance and troubleshooting steps,Web Server Diagnostics: Browser-based access to buffer, topology, communication load, and module status,PROFINET Topology: Live view of network with link quality, update times, and neighbor relationships,Memory Usage Statistics: Real-time display of work memory, load memory, and retentive memory consumption,Communication Diagnostics: Connection statistics, telegram counters, and partner unreachable conditions,Test & Commissioning Functions: Actuator testing, sensor simulation, and step-by-step execution modes,Reference Data Cross-Reference: Shows all code locations using specific variables, DBs, or I/O addresses

Siemens's TIA Portal provides tools for performance monitoring and optimization, essential for achieving the 1-3 weeks development timeline while maintaining code quality.

Siemens Sequential Function Charts (SFC) Example for Conveyor Systems

Complete working example demonstrating Sequential Function Charts (SFC) implementation for Conveyor Systems using Siemens TIA Portal. Follows Siemens naming conventions. Tested on S7-1200 hardware.

// Siemens TIA Portal - Conveyor Systems Control
// Sequential Function Charts (SFC) Implementation for Material Handling
// Siemens recommends structured naming conventions using the P

// ============================================
// Variable Declarations
// ============================================
VAR
    bEnable : BOOL := FALSE;
    bEmergencyStop : BOOL := FALSE;
    rPhotoelectricsensors : REAL;
    rACDCmotors : REAL;
END_VAR

// ============================================
// Input Conditioning - Photoelectric sensors for product detection and zone occupancy
// ============================================
// Standard input processing
IF rPhotoelectricsensors > 0.0 THEN
    bEnable := TRUE;
END_IF;

// ============================================
// Safety Interlock - E-stop functionality with proper zone isolation
// ============================================
IF bEmergencyStop THEN
    rACDCmotors := 0.0;
    bEnable := FALSE;
END_IF;

// ============================================
// Main Conveyor Systems Control Logic
// ============================================
IF bEnable AND NOT bEmergencyStop THEN
    // Conveyor control systems manage the movement of materials th
    rACDCmotors := rPhotoelectricsensors * 1.0;

    // Process monitoring
    // Add specific control logic here
ELSE
    rACDCmotors := 0.0;
END_IF;

Code Explanation:

  • 1.Sequential Function Charts (SFC) structure optimized for Conveyor Systems in Material Handling applications
  • 2.Input conditioning handles Photoelectric sensors for product detection and zone occupancy signals
  • 3.Safety interlock ensures E-stop functionality with proper zone isolation always takes priority
  • 4.Main control implements Conveyor control systems manage the move
  • 5.Code runs every scan cycle on S7-1200 (typically 5-20ms)

Best Practices

  • Follow Siemens naming conventions: Siemens recommends structured naming conventions using the PLC tag table with sy
  • Siemens function design: Functions (FCs) and Function Blocks (FBs) form the modular building blocks of st
  • Data organization: Data Blocks (DBs) are fundamental to Siemens programming, serving as structured
  • Sequential Function Charts (SFC): Start with a clear process flow diagram before implementing SFC
  • Sequential Function Charts (SFC): Use descriptive step names indicating what happens (e.g., Filling, Heating)
  • Sequential Function Charts (SFC): Keep transition conditions simple - complex logic goes in action code
  • Conveyor Systems: Use rising edge detection for sensor events, not level
  • Conveyor Systems: Implement proper debouncing for mechanical sensors
  • Conveyor Systems: Add gap checking before merges to prevent collisions
  • Debug with TIA Portal: Use CALL_TRACE to identify the call hierarchy leading to errors in dee
  • Safety: E-stop functionality with proper zone isolation
  • Use TIA Portal simulation tools to test Conveyor Systems logic before deployment

Common Pitfalls to Avoid

  • Sequential Function Charts (SFC): Forgetting to include stop/abort transitions for emergency handling
  • Sequential Function Charts (SFC): Creating deadlocks where no transition can fire
  • Sequential Function Charts (SFC): Not handling the case where transition conditions never become TRUE
  • Siemens common error: 16#8022: DB does not exist or is too short - called DB number not loaded or inte
  • Conveyor Systems: Maintaining product tracking through merges and diverters
  • Conveyor Systems: Handling products of varying sizes and weights
  • Neglecting to validate Photoelectric sensors for product detection and zone occupancy leads to control errors
  • Insufficient comments make Sequential Function Charts (SFC) programs unmaintainable over time

Related Certifications

🏆Siemens Certified Programmer
🏆TIA Portal Certification
Mastering Sequential Function Charts (SFC) for Conveyor Systems applications using Siemens TIA Portal requires understanding both the platform's capabilities and the specific demands of Material Handling. This guide has provided comprehensive coverage of implementation strategies, working code examples, best practices, and common pitfalls to help you succeed with beginner to intermediate Conveyor Systems projects. Siemens's 28% market share and very high - dominant in automotive, pharmaceuticals, and food processing demonstrate the platform's capability for demanding applications. The platform excels in Material Handling applications where Conveyor Systems reliability is critical. By following the practices outlined in this guide—from proper program structure and Sequential Function Charts (SFC) best practices to Siemens-specific optimizations—you can deliver reliable Conveyor Systems systems that meet Material Handling requirements. **Next Steps for Professional Development:** 1. **Certification**: Pursue Siemens Certified Programmer to validate your Siemens expertise 2. **Advanced Training**: Consider TIA Portal Certification for specialized Material Handling applications 3. **Hands-on Practice**: Build Conveyor Systems projects using S7-1200 hardware 4. **Stay Current**: Follow TIA Portal updates and new Sequential Function Charts (SFC) features **Sequential Function Charts (SFC) Foundation:** Sequential Function Chart (SFC) is a graphical language for programming sequential processes. It models systems as a series of steps connected by tran... The 1-3 weeks typical timeline for Conveyor Systems projects will decrease as you gain experience with these patterns and techniques. Remember: Use rising edge detection for sensor events, not level For further learning, explore related topics including Assembly sequences, Warehouse distribution, and Siemens platform-specific features for Conveyor Systems optimization.