Intermediate20 min readWater & Wastewater

Schneider Electric Structured Text for Pump Control

Learn Structured Text programming for Pump Control using Schneider Electric EcoStruxure Machine Expert. Includes code examples, best practices, and step-by-step implementation guide for Water & Wastewater applications.

💻
Platform
EcoStruxure Machine Expert
📊
Complexity
Intermediate
⏱️
Project Duration
2-4 weeks
Mastering advanced Structured Text techniques for Pump Control in Schneider Electric's EcoStruxure Machine Expert unlocks capabilities beyond basic implementations. This guide explores sophisticated programming patterns, optimization strategies, and advanced features that separate expert Schneider Electric programmers from intermediate practitioners in Water & Wastewater applications. Schneider Electric's EcoStruxure Machine Expert contains powerful advanced features that many programmers never fully utilize. With 12% market share and deployment in demanding applications like municipal water systems and wastewater treatment, Schneider Electric has developed advanced capabilities specifically for intermediate projects requiring powerful for complex logic and excellent code reusability. Advanced Pump Control implementations leverage sophisticated techniques including multi-sensor fusion algorithms, coordinated multi-actuator control, and intelligent handling of pressure regulation. When implemented using Structured Text, these capabilities are achieved through complex calculations patterns that exploit Schneider Electric-specific optimizations. This guide reveals advanced programming techniques used by expert Schneider Electric programmers, including custom function blocks, optimized data structures, advanced Structured Text patterns, and EcoStruxure Machine Expert-specific features that deliver superior performance. You'll learn implementation strategies that go beyond standard documentation, based on years of practical experience with Pump Control systems in production Water & Wastewater environments.

Schneider Electric EcoStruxure Machine Expert for Pump Control

EcoStruxure Machine Expert (formerly SoMachine) provides Schneider Electric's unified programming environment for Modicon M221, M241, M251, M262, and M580 PLCs. Built on the CODESYS V3 platform, Machine Expert delivers IEC 61131-3 compliant programming with all five languages plus CFC (Continuous Function Chart). The environment supports object-oriented programming extensions including classes, interfaces, methods, and properties for creating sophisticated reusable code libraries....

Platform Strengths for Pump Control:

  • Excellent energy efficiency features

  • Strong IoT/cloud integration

  • Good balance of price and performance

  • Wide product range


Unique ${brand.software} Features:

  • CODESYS V3-based platform with full IEC 61131-3 language support plus extensions

  • Object-oriented programming with classes, methods, properties, and interfaces

  • Integrated motion control workbench for cam design and multi-axis coordination

  • Machine Expert Twin for digital twin simulation and virtual commissioning


Key Capabilities:

The EcoStruxure Machine Expert environment excels at Pump Control applications through its excellent energy efficiency features. This is particularly valuable when working with the 5 sensor types typically found in Pump Control systems, including Pressure transmitters, Flow meters, Level sensors.

Control Equipment for Pump Control:

  • Centrifugal pumps for high flow applications

  • Positive displacement pumps for metering

  • Submersible pumps for wet well applications

  • Booster pump systems for pressure maintenance


Schneider Electric's controller families for Pump Control include:

  • Modicon M580: Suitable for intermediate Pump Control applications

  • Modicon M340: Suitable for intermediate Pump Control applications

  • Modicon M221: Suitable for intermediate Pump Control applications

  • Modicon M241: Suitable for intermediate Pump Control applications

Hardware Selection Guidance:

Schneider's Modicon portfolio spans compact to high-performance controllers. M221 offers cost-effective control for simple machines. M241/M251 add performance and networking. M262 targets high-performance motion applications with Sercos III. M580 addresses process applications with hot-standby redundancy....

Industry Recognition:

High - Strong in food & beverage, water treatment, and building automation. Schneider M580/M262 controllers serve automotive with production line flexibility and energy management. Vision-guided robotics, energy monitoring via PowerLogic meters, and safety integration via Preventa controllers....

Investment Considerations:

With $$ pricing, Schneider Electric positions itself in the mid-range segment. For Pump Control projects requiring intermediate skill levels and 2-4 weeks development time, the total investment includes hardware, software licensing, training, and ongoing support.

Understanding Structured Text for Pump Control

Structured Text (ST) is a high-level, text-based programming language defined in IEC 61131-3. It resembles Pascal and provides powerful constructs for complex algorithms, calculations, and data manipulation.

Execution Model:

Code executes sequentially from top to bottom within each program unit. Variables maintain state between scan cycles unless explicitly reset.

Core Advantages for Pump Control:

  • Powerful for complex logic: Critical for Pump Control when handling intermediate control logic

  • Excellent code reusability: Critical for Pump Control when handling intermediate control logic

  • Compact code representation: Critical for Pump Control when handling intermediate control logic

  • Good for algorithms and calculations: Critical for Pump Control when handling intermediate control logic

  • Familiar to software developers: Critical for Pump Control when handling intermediate control logic


Why Structured Text Fits Pump Control:

Pump Control systems in Water & Wastewater typically involve:

  • Sensors: Pressure transmitters for discharge and suction pressure, Flow meters (magnetic, ultrasonic, or vortex), Level transmitters for tank or wet well level

  • Actuators: Variable frequency drives (VFDs) for speed control, Motor starters (DOL or soft start), Control valves for flow regulation

  • Complexity: Intermediate with challenges including Preventing cavitation at low suction pressure


Control Strategies for Pump Control:

  • constant: Maintain fixed speed or output

  • pressure: PID control to maintain discharge pressure setpoint

  • flow: PID control to maintain flow rate setpoint


Programming Fundamentals in Structured Text:

Variables:
- declaration: VAR / VAR_INPUT / VAR_OUTPUT / VAR_IN_OUT / VAR_GLOBAL sections
- initialization: Variables can be initialized at declaration: Counter : INT := 0;
- constants: VAR CONSTANT section for read-only values

Operators:
- arithmetic: + - * / MOD (modulo)
- comparison: = <> < > <= >=
- logical: AND OR XOR NOT

ControlStructures:
- if: IF condition THEN statements; ELSIF condition THEN statements; ELSE statements; END_IF;
- case: CASE selector OF value1: statements; value2: statements; ELSE statements; END_CASE;
- for: FOR index := start TO end BY step DO statements; END_FOR;

Best Practices for Structured Text:

  • Use meaningful variable names with consistent naming conventions

  • Initialize all variables at declaration to prevent undefined behavior

  • Use enumerated types for state machines instead of magic numbers

  • Break complex expressions into intermediate variables for readability

  • Use functions for reusable calculations and function blocks for stateful operations


Common Mistakes to Avoid:

  • Using = instead of := for assignment (= is comparison)

  • Forgetting semicolons at end of statements

  • Integer division truncation - use REAL for decimal results

  • Infinite loops from incorrect WHILE/REPEAT conditions


Typical Applications:

1. PID control: Directly applicable to Pump Control
2. Recipe management: Related control patterns
3. Statistical calculations: Related control patterns
4. Data logging: Related control patterns

Understanding these fundamentals prepares you to implement effective Structured Text solutions for Pump Control using Schneider Electric EcoStruxure Machine Expert.

Implementing Pump Control with Structured Text

Pump control systems use PLCs to regulate liquid flow in industrial processes, water treatment, and building services. These systems manage pump operation, protect equipment, optimize energy use, and maintain process parameters.

This walkthrough demonstrates practical implementation using Schneider Electric EcoStruxure Machine Expert and Structured Text programming.

System Requirements:

A typical Pump Control implementation includes:

Input Devices (Sensors):
1. Pressure transmitters for discharge and suction pressure: Critical for monitoring system state
2. Flow meters (magnetic, ultrasonic, or vortex): Critical for monitoring system state
3. Level transmitters for tank or wet well level: Critical for monitoring system state
4. Temperature sensors for bearing and motor monitoring: Critical for monitoring system state
5. Vibration sensors for predictive maintenance: Critical for monitoring system state

Output Devices (Actuators):
1. Variable frequency drives (VFDs) for speed control: Primary control output
2. Motor starters (DOL or soft start): Supporting control function
3. Control valves for flow regulation: Supporting control function
4. Isolation valves (actuated for remote operation): Supporting control function
5. Check valves to prevent backflow: Supporting control function

Control Equipment:

  • Centrifugal pumps for high flow applications

  • Positive displacement pumps for metering

  • Submersible pumps for wet well applications

  • Booster pump systems for pressure maintenance


Control Strategies for Pump Control:

  • constant: Maintain fixed speed or output

  • pressure: PID control to maintain discharge pressure setpoint

  • flow: PID control to maintain flow rate setpoint

  • level: Control tank/wet well level within band


Implementation Steps:

Step 1: Characterize pump curve and system curve

In EcoStruxure Machine Expert, characterize pump curve and system curve.

Step 2: Size VFD for application (constant torque vs. variable torque)

In EcoStruxure Machine Expert, size vfd for application (constant torque vs. variable torque).

Step 3: Implement primary control loop (pressure, flow, or level)

In EcoStruxure Machine Expert, implement primary control loop (pressure, flow, or level).

Step 4: Add pump protection logic (minimum flow, temperature, seal)

In EcoStruxure Machine Expert, add pump protection logic (minimum flow, temperature, seal).

Step 5: Program lead/lag sequencing with alternation

In EcoStruxure Machine Expert, program lead/lag sequencing with alternation.

Step 6: Implement soft start/stop ramps for smooth operation

In EcoStruxure Machine Expert, implement soft start/stop ramps for smooth operation.


Schneider Electric Function Design:

Function blocks follow object-oriented principles with Input/Output/InOut parameters, Methods extending functionality, and Properties providing controlled access. Interfaces enable polymorphism.

Common Challenges and Solutions:

1. Preventing cavitation at low suction pressure

  • Solution: Structured Text addresses this through Powerful for complex logic.


2. Managing minimum flow requirements

  • Solution: Structured Text addresses this through Excellent code reusability.


3. Coordinating VFD speed with system pressure

  • Solution: Structured Text addresses this through Compact code representation.


4. Handling pump cycling with varying demand

  • Solution: Structured Text addresses this through Good for algorithms and calculations.


Safety Considerations:

  • Dry run protection using flow or level monitoring

  • Overtemperature protection for motor and bearings

  • Overload protection through current monitoring

  • Vibration trips for mechanical failure detection

  • Emergency stop with proper system depressurization


Performance Metrics:

  • Scan Time: Optimize for 5 inputs and 5 outputs

  • Memory Usage: Efficient data structures for Modicon M580 capabilities

  • Response Time: Meeting Water & Wastewater requirements for Pump Control

Schneider Electric Diagnostic Tools:

Online monitoring overlay showing live values,Watch window tracking variables with expressions,Breakpoints pausing execution for inspection,Trace recording variable changes over time,Device diagnostics showing module status

Schneider Electric's EcoStruxure Machine Expert provides tools for performance monitoring and optimization, essential for achieving the 2-4 weeks development timeline while maintaining code quality.

Schneider Electric Structured Text Example for Pump Control

Complete working example demonstrating Structured Text implementation for Pump Control using Schneider Electric EcoStruxure Machine Expert. Follows Schneider Electric naming conventions. Tested on Modicon M580 hardware.

(* Schneider Electric EcoStruxure Machine Expert - Pump Control Control *)
(* Structured Text Implementation for Water & Wastewater *)
(* Schneider recommends Hungarian-style prefixes: g_ for globals, i_ and  *)

PROGRAM PRG_PUMP_CONTROL_Control

VAR
    (* State Machine Variables *)
    eState : E_PUMP_CONTROL_States := IDLE;
    bEnable : BOOL := FALSE;
    bFaultActive : BOOL := FALSE;

    (* Timers *)
    tonDebounce : TON;
    tonProcessTimeout : TON;
    tonFeedbackCheck : TON;

    (* Counters *)
    ctuCycleCounter : CTU;

    (* Process Variables *)
    rPressuretransmitters : REAL := 0.0;
    rCentrifugalpumps : REAL := 0.0;
    rSetpoint : REAL := 100.0;
END_VAR

VAR CONSTANT
    (* Water & Wastewater Process Parameters *)
    C_DEBOUNCE_TIME : TIME := T#500MS;
    C_PROCESS_TIMEOUT : TIME := T#30S;
    C_BATCH_SIZE : INT := 50;
END_VAR

(* Input Conditioning *)
tonDebounce(IN := bStartButton, PT := C_DEBOUNCE_TIME);
bEnable := tonDebounce.Q AND NOT bEmergencyStop AND bSafetyOK;

(* Main State Machine - Pattern: CASE eState OF IDLE: IF bStartCmd THEN e *)
CASE eState OF
    IDLE:
        rCentrifugalpumps := 0.0;
        ctuCycleCounter(RESET := TRUE);
        IF bEnable AND rPressuretransmitters > 0.0 THEN
            eState := STARTING;
        END_IF;

    STARTING:
        (* Ramp up output - Gradual start *)
        rCentrifugalpumps := MIN(rCentrifugalpumps + 5.0, rSetpoint);
        IF rCentrifugalpumps >= rSetpoint THEN
            eState := RUNNING;
        END_IF;

    RUNNING:
        (* Pump Control active - Pump control systems use PLCs to regulate liquid f *)
        tonProcessTimeout(IN := TRUE, PT := C_PROCESS_TIMEOUT);
        ctuCycleCounter(CU := bCyclePulse, PV := C_BATCH_SIZE);

        IF ctuCycleCounter.Q THEN
            eState := COMPLETE;
        ELSIF tonProcessTimeout.Q THEN
            bFaultActive := TRUE;
            eState := FAULT;
        END_IF;

    COMPLETE:
        rCentrifugalpumps := 0.0;
        (* Log production data - Circular buffer with ST_LogRecord structure. Write index increments with modulo wrap. File export using SysFile library writing CSV format. *)
        eState := IDLE;

    FAULT:
        rCentrifugalpumps := 0.0;
        (* Use ST_Alarm structure with bActive, bAcknowledged, dtActivation, nCode, sMessage. Array of alarms with detection, acknowledgment, and logging methods. *)
        IF bFaultReset AND NOT bEmergencyStop THEN
            bFaultActive := FALSE;
            eState := IDLE;
        END_IF;
END_CASE;

(* Safety Override - Always executes *)
IF bEmergencyStop OR NOT bSafetyOK THEN
    rCentrifugalpumps := 0.0;
    eState := FAULT;
    bFaultActive := TRUE;
END_IF;

END_PROGRAM

Code Explanation:

  • 1.Enumerated state machine (CASE eState OF IDLE: IF bStartCmd THEN eState := STARTING; END_IF; STARTING: RunStartSequence(); IF bStartComplete THEN eState := RUNNING; END_IF; RUNNING: Execute(); IF bStopCmd THEN eState := STOPPING; END_IF; END_CASE;) for clear Pump Control sequence control
  • 2.Constants define Water & Wastewater-specific parameters: cycle time 30s, batch size
  • 3.Input conditioning with debounce timer prevents false triggers in industrial environment
  • 4.STARTING state implements soft-start ramp - prevents mechanical shock
  • 5.Process timeout detection identifies stuck conditions - critical for reliability
  • 6.Safety override section executes regardless of state - Schneider Electric best practice for intermediate systems

Best Practices

  • Follow Schneider Electric naming conventions: Schneider recommends Hungarian-style prefixes: g_ for globals, i_ and q_ for FB
  • Schneider Electric function design: Function blocks follow object-oriented principles with Input/Output/InOut parame
  • Data organization: Structured data uses GVLs grouping related globals and DUTs defining custom type
  • Structured Text: Use meaningful variable names with consistent naming conventions
  • Structured Text: Initialize all variables at declaration to prevent undefined behavior
  • Structured Text: Use enumerated types for state machines instead of magic numbers
  • Pump Control: Use PID with derivative on PV for pressure control
  • Pump Control: Implement soft start ramps even with VFD (200-500ms)
  • Pump Control: Add flow proving before considering pump operational
  • Debug with EcoStruxure Machine Expert: Use structured logging with severity levels
  • Safety: Dry run protection using flow or level monitoring
  • Use EcoStruxure Machine Expert simulation tools to test Pump Control logic before deployment

Common Pitfalls to Avoid

  • Structured Text: Using = instead of := for assignment (= is comparison)
  • Structured Text: Forgetting semicolons at end of statements
  • Structured Text: Integer division truncation - use REAL for decimal results
  • Schneider Electric common error: Exception 'AccessViolation': Null pointer dereference
  • Pump Control: Preventing cavitation at low suction pressure
  • Pump Control: Managing minimum flow requirements
  • Neglecting to validate Pressure transmitters for discharge and suction pressure leads to control errors
  • Insufficient comments make Structured Text programs unmaintainable over time

Related Certifications

🏆EcoStruxure Certified Expert
🏆Advanced Schneider Electric Programming Certification
Mastering Structured Text for Pump Control applications using Schneider Electric EcoStruxure Machine Expert requires understanding both the platform's capabilities and the specific demands of Water & Wastewater. This guide has provided comprehensive coverage of implementation strategies, working code examples, best practices, and common pitfalls to help you succeed with intermediate Pump Control projects. Schneider Electric's 12% market share and high - strong in food & beverage, water treatment, and building automation demonstrate the platform's capability for demanding applications. The platform excels in Water & Wastewater applications where Pump Control reliability is critical. By following the practices outlined in this guide—from proper program structure and Structured Text best practices to Schneider Electric-specific optimizations—you can deliver reliable Pump Control systems that meet Water & Wastewater requirements. **Next Steps for Professional Development:** 1. **Certification**: Pursue EcoStruxure Certified Expert to validate your Schneider Electric expertise 3. **Hands-on Practice**: Build Pump Control projects using Modicon M580 hardware 4. **Stay Current**: Follow EcoStruxure Machine Expert updates and new Structured Text features **Structured Text Foundation:** Structured Text (ST) is a high-level, text-based programming language defined in IEC 61131-3. It resembles Pascal and provides powerful constructs for... The 2-4 weeks typical timeline for Pump Control projects will decrease as you gain experience with these patterns and techniques. Remember: Use PID with derivative on PV for pressure control For further learning, explore related topics including Recipe management, Wastewater treatment, and Schneider Electric platform-specific features for Pump Control optimization.