Intermediate20 min readIndustrial Manufacturing

Schneider Electric Structured Text for Motor Control

Learn Structured Text programming for Motor Control using Schneider Electric EcoStruxure Machine Expert. Includes code examples, best practices, and step-by-step implementation guide for Industrial Manufacturing applications.

💻
Platform
EcoStruxure Machine Expert
📊
Complexity
Beginner to Intermediate
⏱️
Project Duration
1-3 weeks
Optimizing Structured Text performance for Motor Control applications in Schneider Electric's EcoStruxure Machine Expert requires understanding both the platform's capabilities and the specific demands of Industrial Manufacturing. This guide focuses on proven optimization techniques that deliver measurable improvements in cycle time, reliability, and system responsiveness. Schneider Electric's EcoStruxure Machine Expert offers powerful tools for Structured Text programming, particularly when targeting beginner to intermediate applications like Motor Control. With 12% market share and extensive deployment in Strong in food & beverage, water treatment, and building automation, Schneider Electric has refined its platform based on real-world performance requirements from thousands of installations. Performance considerations for Motor Control systems extend beyond basic functionality. Critical factors include 5 sensor types requiring fast scan times, 5 actuators demanding precise timing, and the need to handle soft start implementation. The Structured Text approach addresses these requirements through powerful for complex logic, enabling scan times that meet even demanding Industrial Manufacturing applications. This guide dives deep into optimization strategies including memory management, execution order optimization, Structured Text-specific performance tuning, and Schneider Electric-specific features that accelerate Motor Control applications. You'll learn techniques used by experienced Schneider Electric programmers to achieve maximum performance while maintaining code clarity and maintainability.

Schneider Electric EcoStruxure Machine Expert for Motor Control

EcoStruxure Machine Expert (formerly SoMachine) provides Schneider Electric's unified programming environment for Modicon M221, M241, M251, M262, and M580 PLCs. Built on the CODESYS V3 platform, Machine Expert delivers IEC 61131-3 compliant programming with all five languages plus CFC (Continuous Function Chart). The environment supports object-oriented programming extensions including classes, interfaces, methods, and properties for creating sophisticated reusable code libraries....

Platform Strengths for Motor Control:

  • Excellent energy efficiency features

  • Strong IoT/cloud integration

  • Good balance of price and performance

  • Wide product range


Unique ${brand.software} Features:

  • CODESYS V3-based platform with full IEC 61131-3 language support plus extensions

  • Object-oriented programming with classes, methods, properties, and interfaces

  • Integrated motion control workbench for cam design and multi-axis coordination

  • Machine Expert Twin for digital twin simulation and virtual commissioning


Key Capabilities:

The EcoStruxure Machine Expert environment excels at Motor Control applications through its excellent energy efficiency features. This is particularly valuable when working with the 5 sensor types typically found in Motor Control systems, including Current sensors, Vibration sensors, Temperature sensors.

Control Equipment for Motor Control:

  • Motor control centers (MCCs)

  • AC induction motors (NEMA/IEC frame)

  • Synchronous motors for high efficiency

  • DC motors for precise speed control


Schneider Electric's controller families for Motor Control include:

  • Modicon M580: Suitable for beginner to intermediate Motor Control applications

  • Modicon M340: Suitable for beginner to intermediate Motor Control applications

  • Modicon M221: Suitable for beginner to intermediate Motor Control applications

  • Modicon M241: Suitable for beginner to intermediate Motor Control applications

Hardware Selection Guidance:

Schneider's Modicon portfolio spans compact to high-performance controllers. M221 offers cost-effective control for simple machines. M241/M251 add performance and networking. M262 targets high-performance motion applications with Sercos III. M580 addresses process applications with hot-standby redundancy....

Industry Recognition:

High - Strong in food & beverage, water treatment, and building automation. Schneider M580/M262 controllers serve automotive with production line flexibility and energy management. Vision-guided robotics, energy monitoring via PowerLogic meters, and safety integration via Preventa controllers....

Investment Considerations:

With $$ pricing, Schneider Electric positions itself in the mid-range segment. For Motor Control projects requiring beginner skill levels and 1-3 weeks development time, the total investment includes hardware, software licensing, training, and ongoing support.

Understanding Structured Text for Motor Control

Structured Text (ST) is a high-level, text-based programming language defined in IEC 61131-3. It resembles Pascal and provides powerful constructs for complex algorithms, calculations, and data manipulation.

Execution Model:

Code executes sequentially from top to bottom within each program unit. Variables maintain state between scan cycles unless explicitly reset.

Core Advantages for Motor Control:

  • Powerful for complex logic: Critical for Motor Control when handling beginner to intermediate control logic

  • Excellent code reusability: Critical for Motor Control when handling beginner to intermediate control logic

  • Compact code representation: Critical for Motor Control when handling beginner to intermediate control logic

  • Good for algorithms and calculations: Critical for Motor Control when handling beginner to intermediate control logic

  • Familiar to software developers: Critical for Motor Control when handling beginner to intermediate control logic


Why Structured Text Fits Motor Control:

Motor Control systems in Industrial Manufacturing typically involve:

  • Sensors: Current transformers for motor current monitoring, RTD or thermocouple for motor winding temperature, Vibration sensors for bearing monitoring

  • Actuators: Contactors for direct-on-line starting, Soft starters for reduced voltage starting, Variable frequency drives for speed control

  • Complexity: Beginner to Intermediate with challenges including Managing starting current within supply limits


Programming Fundamentals in Structured Text:

Variables:
- declaration: VAR / VAR_INPUT / VAR_OUTPUT / VAR_IN_OUT / VAR_GLOBAL sections
- initialization: Variables can be initialized at declaration: Counter : INT := 0;
- constants: VAR CONSTANT section for read-only values

Operators:
- arithmetic: + - * / MOD (modulo)
- comparison: = <> < > <= >=
- logical: AND OR XOR NOT

ControlStructures:
- if: IF condition THEN statements; ELSIF condition THEN statements; ELSE statements; END_IF;
- case: CASE selector OF value1: statements; value2: statements; ELSE statements; END_CASE;
- for: FOR index := start TO end BY step DO statements; END_FOR;

Best Practices for Structured Text:

  • Use meaningful variable names with consistent naming conventions

  • Initialize all variables at declaration to prevent undefined behavior

  • Use enumerated types for state machines instead of magic numbers

  • Break complex expressions into intermediate variables for readability

  • Use functions for reusable calculations and function blocks for stateful operations


Common Mistakes to Avoid:

  • Using = instead of := for assignment (= is comparison)

  • Forgetting semicolons at end of statements

  • Integer division truncation - use REAL for decimal results

  • Infinite loops from incorrect WHILE/REPEAT conditions


Typical Applications:

1. PID control: Directly applicable to Motor Control
2. Recipe management: Related control patterns
3. Statistical calculations: Related control patterns
4. Data logging: Related control patterns

Understanding these fundamentals prepares you to implement effective Structured Text solutions for Motor Control using Schneider Electric EcoStruxure Machine Expert.

Implementing Motor Control with Structured Text

Motor control systems use PLCs to start, stop, and regulate electric motors in industrial applications. These systems provide protection, speed control, and coordination for motors ranging from fractional horsepower to thousands of horsepower.

This walkthrough demonstrates practical implementation using Schneider Electric EcoStruxure Machine Expert and Structured Text programming.

System Requirements:

A typical Motor Control implementation includes:

Input Devices (Sensors):
1. Current transformers for motor current monitoring: Critical for monitoring system state
2. RTD or thermocouple for motor winding temperature: Critical for monitoring system state
3. Vibration sensors for bearing monitoring: Critical for monitoring system state
4. Speed encoders or tachometers: Critical for monitoring system state
5. Torque sensors for load monitoring: Critical for monitoring system state

Output Devices (Actuators):
1. Contactors for direct-on-line starting: Primary control output
2. Soft starters for reduced voltage starting: Supporting control function
3. Variable frequency drives for speed control: Supporting control function
4. Brakes (mechanical or dynamic): Supporting control function
5. Starters (star-delta, autotransformer): Supporting control function

Control Equipment:

  • Motor control centers (MCCs)

  • AC induction motors (NEMA/IEC frame)

  • Synchronous motors for high efficiency

  • DC motors for precise speed control


Control Strategies for Motor Control:

1. Primary Control: Industrial motor control using PLCs for start/stop, speed control, and protection of electric motors.
2. Safety Interlocks: Preventing Soft start implementation
3. Error Recovery: Handling Overload protection

Implementation Steps:

Step 1: Calculate motor starting current and verify supply capacity

In EcoStruxure Machine Expert, calculate motor starting current and verify supply capacity.

Step 2: Select starting method based on motor size and load requirements

In EcoStruxure Machine Expert, select starting method based on motor size and load requirements.

Step 3: Configure motor protection with correct thermal curve

In EcoStruxure Machine Expert, configure motor protection with correct thermal curve.

Step 4: Implement control logic for start/stop with proper interlocks

In EcoStruxure Machine Expert, implement control logic for start/stop with proper interlocks.

Step 5: Add speed control loop if VFD is used

In EcoStruxure Machine Expert, add speed control loop if vfd is used.

Step 6: Configure acceleration and deceleration ramps

In EcoStruxure Machine Expert, configure acceleration and deceleration ramps.


Schneider Electric Function Design:

Function blocks follow object-oriented principles with Input/Output/InOut parameters, Methods extending functionality, and Properties providing controlled access. Interfaces enable polymorphism.

Common Challenges and Solutions:

1. Managing starting current within supply limits

  • Solution: Structured Text addresses this through Powerful for complex logic.


2. Coordinating acceleration with driven load requirements

  • Solution: Structured Text addresses this through Excellent code reusability.


3. Protecting motors from frequent starting (thermal cycling)

  • Solution: Structured Text addresses this through Compact code representation.


4. Handling regenerative energy during deceleration

  • Solution: Structured Text addresses this through Good for algorithms and calculations.


Safety Considerations:

  • Proper machine guarding for rotating equipment

  • Emergency stop functionality with safe torque off

  • Lockout/tagout provisions for maintenance

  • Arc flash protection and PPE requirements

  • Proper grounding and bonding


Performance Metrics:

  • Scan Time: Optimize for 5 inputs and 5 outputs

  • Memory Usage: Efficient data structures for Modicon M580 capabilities

  • Response Time: Meeting Industrial Manufacturing requirements for Motor Control

Schneider Electric Diagnostic Tools:

Online monitoring overlay showing live values,Watch window tracking variables with expressions,Breakpoints pausing execution for inspection,Trace recording variable changes over time,Device diagnostics showing module status

Schneider Electric's EcoStruxure Machine Expert provides tools for performance monitoring and optimization, essential for achieving the 1-3 weeks development timeline while maintaining code quality.

Schneider Electric Structured Text Example for Motor Control

Complete working example demonstrating Structured Text implementation for Motor Control using Schneider Electric EcoStruxure Machine Expert. Follows Schneider Electric naming conventions. Tested on Modicon M580 hardware.

(* Schneider Electric EcoStruxure Machine Expert - Motor Control Control *)
(* Structured Text Implementation for Industrial Manufacturing *)
(* Schneider recommends Hungarian-style prefixes: g_ for globals, i_ and  *)

PROGRAM PRG_MOTOR_CONTROL_Control

VAR
    (* State Machine Variables *)
    eState : E_MOTOR_CONTROL_States := IDLE;
    bEnable : BOOL := FALSE;
    bFaultActive : BOOL := FALSE;

    (* Timers *)
    tonDebounce : TON;
    tonProcessTimeout : TON;
    tonFeedbackCheck : TON;

    (* Counters *)
    ctuCycleCounter : CTU;

    (* Process Variables *)
    rCurrentsensors : REAL := 0.0;
    rMotorstarters : REAL := 0.0;
    rSetpoint : REAL := 100.0;
END_VAR

VAR CONSTANT
    (* Industrial Manufacturing Process Parameters *)
    C_DEBOUNCE_TIME : TIME := T#500MS;
    C_PROCESS_TIMEOUT : TIME := T#30S;
    C_BATCH_SIZE : INT := 50;
END_VAR

(* Input Conditioning *)
tonDebounce(IN := bStartButton, PT := C_DEBOUNCE_TIME);
bEnable := tonDebounce.Q AND NOT bEmergencyStop AND bSafetyOK;

(* Main State Machine - Pattern: CASE eState OF IDLE: IF bStartCmd THEN e *)
CASE eState OF
    IDLE:
        rMotorstarters := 0.0;
        ctuCycleCounter(RESET := TRUE);
        IF bEnable AND rCurrentsensors > 0.0 THEN
            eState := STARTING;
        END_IF;

    STARTING:
        (* Ramp up output - Gradual start *)
        rMotorstarters := MIN(rMotorstarters + 5.0, rSetpoint);
        IF rMotorstarters >= rSetpoint THEN
            eState := RUNNING;
        END_IF;

    RUNNING:
        (* Motor Control active - Motor control systems use PLCs to start, stop, and *)
        tonProcessTimeout(IN := TRUE, PT := C_PROCESS_TIMEOUT);
        ctuCycleCounter(CU := bCyclePulse, PV := C_BATCH_SIZE);

        IF ctuCycleCounter.Q THEN
            eState := COMPLETE;
        ELSIF tonProcessTimeout.Q THEN
            bFaultActive := TRUE;
            eState := FAULT;
        END_IF;

    COMPLETE:
        rMotorstarters := 0.0;
        (* Log production data - Circular buffer with ST_LogRecord structure. Write index increments with modulo wrap. File export using SysFile library writing CSV format. *)
        eState := IDLE;

    FAULT:
        rMotorstarters := 0.0;
        (* Use ST_Alarm structure with bActive, bAcknowledged, dtActivation, nCode, sMessage. Array of alarms with detection, acknowledgment, and logging methods. *)
        IF bFaultReset AND NOT bEmergencyStop THEN
            bFaultActive := FALSE;
            eState := IDLE;
        END_IF;
END_CASE;

(* Safety Override - Always executes *)
IF bEmergencyStop OR NOT bSafetyOK THEN
    rMotorstarters := 0.0;
    eState := FAULT;
    bFaultActive := TRUE;
END_IF;

END_PROGRAM

Code Explanation:

  • 1.Enumerated state machine (CASE eState OF IDLE: IF bStartCmd THEN eState := STARTING; END_IF; STARTING: RunStartSequence(); IF bStartComplete THEN eState := RUNNING; END_IF; RUNNING: Execute(); IF bStopCmd THEN eState := STOPPING; END_IF; END_CASE;) for clear Motor Control sequence control
  • 2.Constants define Industrial Manufacturing-specific parameters: cycle time 30s, batch size
  • 3.Input conditioning with debounce timer prevents false triggers in industrial environment
  • 4.STARTING state implements soft-start ramp - prevents mechanical shock
  • 5.Process timeout detection identifies stuck conditions - critical for reliability
  • 6.Safety override section executes regardless of state - Schneider Electric best practice for beginner to intermediate systems

Best Practices

  • Follow Schneider Electric naming conventions: Schneider recommends Hungarian-style prefixes: g_ for globals, i_ and q_ for FB
  • Schneider Electric function design: Function blocks follow object-oriented principles with Input/Output/InOut parame
  • Data organization: Structured data uses GVLs grouping related globals and DUTs defining custom type
  • Structured Text: Use meaningful variable names with consistent naming conventions
  • Structured Text: Initialize all variables at declaration to prevent undefined behavior
  • Structured Text: Use enumerated types for state machines instead of magic numbers
  • Motor Control: Verify motor running with current or speed feedback, not just contactor status
  • Motor Control: Implement minimum off time between starts for motor cooling
  • Motor Control: Add phase loss and phase reversal protection
  • Debug with EcoStruxure Machine Expert: Use structured logging with severity levels
  • Safety: Proper machine guarding for rotating equipment
  • Use EcoStruxure Machine Expert simulation tools to test Motor Control logic before deployment

Common Pitfalls to Avoid

  • Structured Text: Using = instead of := for assignment (= is comparison)
  • Structured Text: Forgetting semicolons at end of statements
  • Structured Text: Integer division truncation - use REAL for decimal results
  • Schneider Electric common error: Exception 'AccessViolation': Null pointer dereference
  • Motor Control: Managing starting current within supply limits
  • Motor Control: Coordinating acceleration with driven load requirements
  • Neglecting to validate Current transformers for motor current monitoring leads to control errors
  • Insufficient comments make Structured Text programs unmaintainable over time

Related Certifications

🏆EcoStruxure Certified Expert
🏆Advanced Schneider Electric Programming Certification
Mastering Structured Text for Motor Control applications using Schneider Electric EcoStruxure Machine Expert requires understanding both the platform's capabilities and the specific demands of Industrial Manufacturing. This guide has provided comprehensive coverage of implementation strategies, working code examples, best practices, and common pitfalls to help you succeed with beginner to intermediate Motor Control projects. Schneider Electric's 12% market share and high - strong in food & beverage, water treatment, and building automation demonstrate the platform's capability for demanding applications. The platform excels in Industrial Manufacturing applications where Motor Control reliability is critical. By following the practices outlined in this guide—from proper program structure and Structured Text best practices to Schneider Electric-specific optimizations—you can deliver reliable Motor Control systems that meet Industrial Manufacturing requirements. **Next Steps for Professional Development:** 1. **Certification**: Pursue EcoStruxure Certified Expert to validate your Schneider Electric expertise 3. **Hands-on Practice**: Build Motor Control projects using Modicon M580 hardware 4. **Stay Current**: Follow EcoStruxure Machine Expert updates and new Structured Text features **Structured Text Foundation:** Structured Text (ST) is a high-level, text-based programming language defined in IEC 61131-3. It resembles Pascal and provides powerful constructs for... The 1-3 weeks typical timeline for Motor Control projects will decrease as you gain experience with these patterns and techniques. Remember: Verify motor running with current or speed feedback, not just contactor status For further learning, explore related topics including Recipe management, Fan systems, and Schneider Electric platform-specific features for Motor Control optimization.