Mitsubishi GX Works2/GX Works3 for Sensor Integration
GX Works3 represents Mitsubishi's latest engineering software supporting the MELSEC iQ-R and iQ-F series controllers, while GX Works2 remains in use for legacy Q, L, and FX5 series PLCs. The programming environment features a project-based structure organizing programs into multiple POUs (Program Organization Units) including main programs, function blocks, and structured projects. Unlike Western PLC manufacturers, Mitsubishi supports both device-addressed programming (X0, Y0, M0, D0) and label-...
Platform Strengths for Sensor Integration:
- Excellent price-to-performance ratio
- Fast processing speeds
- Compact form factors
- Strong support in Asia-Pacific
Unique ${brand.software} Features:
- Simple Motion module integration with motion SFC (Sequential Function Chart) programming eliminating complex positioning code
- RD.DPR instruction providing direct device programming without software transfer for recipe adjustments
- Melsoft Navigator project management integrating multiple controllers, HMIs, and network devices in unified environment
- Multiple CPU configuration allowing up to 4 CPUs in single rack sharing memory via high-speed backplane
Key Capabilities:
The GX Works2/GX Works3 environment excels at Sensor Integration applications through its excellent price-to-performance ratio. This is particularly valuable when working with the 5 sensor types typically found in Sensor Integration systems, including Analog sensors (4-20mA, 0-10V), Digital sensors (NPN, PNP), Smart sensors (IO-Link).
Mitsubishi's controller families for Sensor Integration include:
- FX5: Suitable for beginner to intermediate Sensor Integration applications
- iQ-R: Suitable for beginner to intermediate Sensor Integration applications
- iQ-F: Suitable for beginner to intermediate Sensor Integration applications
- Q Series: Suitable for beginner to intermediate Sensor Integration applications
Hardware Selection Guidance:
Mitsubishi offers several controller families addressing different performance and application requirements. The MELSEC iQ-R series represents the flagship product line with processing speeds as fast as 0.98ns per basic instruction supporting applications from small machines to complex automated systems. R04CPU provides 40K steps program capacity and 256K words data memory suitable for compact mac...
Industry Recognition:
High - Popular in electronics manufacturing, packaging, and assembly. Mitsubishi PLCs serve Japanese and Asian automotive manufacturers with MELSEC iQ-R controllers managing assembly line transfers, welding automation, and quality inspection systems. Body assembly lines use multiple CPU configurations (up to 4 CPUs in single rack) distributing control: CPU1 handles co...
Investment Considerations:
With $$ pricing, Mitsubishi positions itself in the mid-range segment. For Sensor Integration projects requiring beginner skill levels and 1-2 weeks development time, the total investment includes hardware, software licensing, training, and ongoing support.
Understanding Function Blocks for Sensor Integration
Function Block Diagram (FBD) is a graphical programming language where functions and function blocks are represented as boxes connected by signal lines. Data flows from left to right through the network.
Execution Model:
Blocks execute based on data dependencies - a block executes only when all its inputs are available. Networks execute top to bottom when dependencies allow.
Core Advantages for Sensor Integration:
- Visual representation of signal flow: Critical for Sensor Integration when handling beginner to intermediate control logic
- Good for modular programming: Critical for Sensor Integration when handling beginner to intermediate control logic
- Reusable components: Critical for Sensor Integration when handling beginner to intermediate control logic
- Excellent for process control: Critical for Sensor Integration when handling beginner to intermediate control logic
- Good for continuous operations: Critical for Sensor Integration when handling beginner to intermediate control logic
Why Function Blocks Fits Sensor Integration:
Sensor Integration systems in Universal typically involve:
- Sensors: Discrete sensors (proximity, photoelectric, limit switches), Analog sensors (4-20mA, 0-10V transmitters), Temperature sensors (RTD, thermocouple, thermistor)
- Actuators: Not applicable - focus on input processing
- Complexity: Beginner to Intermediate with challenges including Electrical noise affecting analog signals
Programming Fundamentals in Function Blocks:
StandardBlocks:
- logic: AND, OR, XOR, NOT - Boolean logic operations
- comparison: EQ, NE, LT, GT, LE, GE - Compare values
- math: ADD, SUB, MUL, DIV, MOD - Arithmetic operations
TimersCounters:
- ton: Timer On-Delay - Output turns ON after preset time
- tof: Timer Off-Delay - Output turns OFF after preset time
- tp: Pulse Timer - Output pulses for preset time
Connections:
- wires: Connect output pins to input pins to pass data
- branches: One output can connect to multiple inputs
- feedback: Outputs can feed back to inputs for state machines
Best Practices for Function Blocks:
- Arrange blocks for clear left-to-right data flow
- Use consistent spacing and alignment for readability
- Label all inputs and outputs with meaningful names
- Create custom FBs for frequently repeated logic patterns
- Minimize wire crossings by careful block placement
Common Mistakes to Avoid:
- Creating feedback loops without proper initialization
- Connecting incompatible data types
- Not considering execution order dependencies
- Overcrowding networks making them hard to read
Typical Applications:
1. HVAC control: Directly applicable to Sensor Integration
2. Temperature control: Related control patterns
3. Flow control: Related control patterns
4. Batch processing: Related control patterns
Understanding these fundamentals prepares you to implement effective Function Blocks solutions for Sensor Integration using Mitsubishi GX Works2/GX Works3.
Implementing Sensor Integration with Function Blocks
Sensor integration involves connecting various measurement devices to PLCs for process monitoring and control. Proper sensor selection, wiring, signal conditioning, and programming ensure reliable data for control decisions.
This walkthrough demonstrates practical implementation using Mitsubishi GX Works2/GX Works3 and Function Blocks programming.
System Requirements:
A typical Sensor Integration implementation includes:
Input Devices (Sensors):
1. Discrete sensors (proximity, photoelectric, limit switches): Critical for monitoring system state
2. Analog sensors (4-20mA, 0-10V transmitters): Critical for monitoring system state
3. Temperature sensors (RTD, thermocouple, thermistor): Critical for monitoring system state
4. Pressure sensors (gauge, differential, absolute): Critical for monitoring system state
5. Level sensors (ultrasonic, radar, capacitive, float): Critical for monitoring system state
Output Devices (Actuators):
1. Not applicable - focus on input processing: Primary control output
Control Strategies for Sensor Integration:
1. Primary Control: Integrating various sensors with PLCs for data acquisition, analog signal processing, and digital input handling.
2. Safety Interlocks: Preventing Signal conditioning
3. Error Recovery: Handling Sensor calibration
Implementation Steps:
Step 1: Select sensor appropriate for process conditions (temperature, pressure, media)
In GX Works2/GX Works3, select sensor appropriate for process conditions (temperature, pressure, media).
Step 2: Design wiring with proper shielding, grounding, and routing
In GX Works2/GX Works3, design wiring with proper shielding, grounding, and routing.
Step 3: Configure input module for sensor type and resolution
In GX Works2/GX Works3, configure input module for sensor type and resolution.
Step 4: Develop scaling routine with calibration parameters
In GX Works2/GX Works3, develop scaling routine with calibration parameters.
Step 5: Implement signal conditioning (filtering, rate limiting)
In GX Works2/GX Works3, implement signal conditioning (filtering, rate limiting).
Step 6: Add fault detection with appropriate response
In GX Works2/GX Works3, add fault detection with appropriate response.
Mitsubishi Function Design:
Function block (FB) programming in Mitsubishi creates reusable logic modules with defined interfaces encapsulating complexity. FB definition includes input variables (VAR_INPUT), output variables (VAR_OUTPUT), internal variables (VAR), and retained variables (VAR_RETAIN) maintaining values between calls. Creating motor control FB: inputs include Start_Cmd (BOOL), Stop_Cmd (BOOL), Speed_SP (INT), outputs include Running_Sts (BOOL), Fault_Sts (BOOL), Actual_Speed (INT), internal variables store timers, state machine stages, and diagnostic counters. FB instantiation creates instance: Motor1 (Motor_FB) with unique variable storage, allowing multiple instances Motor1, Motor2, Motor3 controlling different motors using same logic. Array of FB instances: Motors : ARRAY[1..10] OF Motor_FB accessed as Motors[3].Running_Sts checking status of motor 3. Standard function (FUN) differs from FB by lacking internal memory, suitable for calculations or conversions: Temp_Conversion_FUN(Celsius) returns Fahrenheit without retaining historical data. Structured text programming within FBs/FUNs provides clearer logic for complex algorithms compared to ladder: IF-THEN-ELSIF-ELSE structures, FOR loops, CASE statements expressing intent more directly than ladder equivalents. EN/ENO functionality enables conditional execution: EN (enable input) controls whether FB executes, ENO (enable output) indicates successful execution detecting errors within block. Library management exports FBs to library files (.glib) shared across projects and engineering teams, versioned to track modifications and ensure consistency. The intelligent function module (IFM) templates provide pre-built FBs for common applications: PID control, analog scaling, motion positioning reducing development time and providing tested reliable code. Simulation mode tests FB logic without hardware, allowing desktop development and unit testing before commissioning. Protection functionality encrypts FB contents preventing unauthorized viewing or modification, useful for proprietary algorithms or OEM machine builders distributing programs to end users.
Common Challenges and Solutions:
1. Electrical noise affecting analog signals
- Solution: Function Blocks addresses this through Visual representation of signal flow.
2. Sensor drift requiring periodic recalibration
- Solution: Function Blocks addresses this through Good for modular programming.
3. Ground loops causing measurement errors
- Solution: Function Blocks addresses this through Reusable components.
4. Response time limitations for fast processes
- Solution: Function Blocks addresses this through Excellent for process control.
Safety Considerations:
- Use intrinsically safe sensors and barriers in hazardous areas
- Implement redundant sensors for safety-critical measurements
- Design for fail-safe operation on sensor loss
- Provide regular sensor calibration for safety systems
- Document measurement uncertainty for safety calculations
Performance Metrics:
- Scan Time: Optimize for 5 inputs and 1 outputs
- Memory Usage: Efficient data structures for FX5 capabilities
- Response Time: Meeting Universal requirements for Sensor Integration
Mitsubishi Diagnostic Tools:
Device memory monitor: Real-time table displaying current values for X, Y, M, D devices with force capability,Entry data monitor: Shows actual rung logic states with contact ON/OFF indication during program execution,Device test: Manually control outputs and set internal relays for wiring verification without program influence,Intelligent module diagnostics: Buffer memory display showing module status, error codes, and configuration,Scan time monitor: Displays current, maximum, and minimum scan times identifying performance issues,Error code history: Chronological log of system errors, module faults, and CPU events with timestamps,CC-Link/network diagnostics: Visual network status showing connected stations, errors, and communication statistics,SD card operation log: Records all SD card read/write operations, file transfers, and access timestamps,Remote diagnosis via Ethernet: Connect GX Works over network for monitoring and troubleshooting without local access,Sampling trace: Records device value changes over time with trigger conditions for intermittent fault analysis,System monitor: Displays CPU load, memory usage, and battery status for predictive maintenance,Safety diagnosis (safety CPU): Dedicated diagnostics for safety I/O discrepancy detection and emergency stop chain status
Mitsubishi's GX Works2/GX Works3 provides tools for performance monitoring and optimization, essential for achieving the 1-2 weeks development timeline while maintaining code quality.
Mitsubishi Function Blocks Example for Sensor Integration
Complete working example demonstrating Function Blocks implementation for Sensor Integration using Mitsubishi GX Works2/GX Works3. Follows Mitsubishi naming conventions. Tested on FX5 hardware.
(* Mitsubishi GX Works2/GX Works3 - Sensor Integration Control *)
(* Reusable Function Blocks Implementation *)
(* Function block (FB) programming in Mitsubishi creates reusab *)
FUNCTION_BLOCK FB_SENSOR_INTEGRATION_Controller
VAR_INPUT
bEnable : BOOL; (* Enable control *)
bReset : BOOL; (* Fault reset *)
rProcessValue : REAL; (* Discrete sensors (proximity, photoelectric, limit switches) *)
rSetpoint : REAL := 100.0; (* Target value *)
bEmergencyStop : BOOL; (* Safety input *)
END_VAR
VAR_OUTPUT
rControlOutput : REAL; (* Not applicable - focus on input processing *)
bRunning : BOOL; (* Process active *)
bComplete : BOOL; (* Cycle complete *)
bFault : BOOL; (* Fault status *)
nFaultCode : INT; (* Diagnostic code *)
END_VAR
VAR
(* Internal Function Blocks *)
fbSafety : FB_SafetyMonitor; (* Safety logic *)
fbRamp : FB_RampGenerator; (* Soft start/stop *)
fbPID : FB_PIDController; (* Process control *)
fbDiag : FB_Diagnostics; (* Alarm management in Mitsubishi uses bit devices (M or B) for alarm active flags with corresponding data registers storing timestamps, values, and alarm details. Alarm structure allocates device ranges: M1000-M1999 for alarm active flags (1000 unique alarms), D5000-D5999 storing alarm timestamps or associated values. Alarm detection logic: [LD Tank_Level > High_Limit] [AND NOT previous alarm state M1000] [OUT M1000] [MOV current time D5000] capturing alarm activation moment. Alarm acknowledgment requires operator action via HMI: GOT screen button writes to acknowledgment bit (M2000) which resets alarm flag when condition clears [LD M1000] [AND alarm cleared] [AND M2000 acknowledged] [RST M1000] [RST M2000]. Priority classification uses different device ranges or separate bits: Critical alarms M1000-M1099, Warnings M1100-M1199, Information M1200-M1299 with severity-specific visual/audible HMI indicators. Alarm logging to SD card uses CSV file write instructions (SDWR) recording alarm number, timestamp, activation/deactivation, and associated process values for historical analysis and regulatory compliance. First-out alarm detection latches initial alarm in cascade of related faults: bearing temperature alarm (M1050) latches before motor overload (M1051) before production stopped (M1052) with reset sequence clearing in reverse order after root cause addressed. Integration with GOT HMI alarm viewer displays active alarms in sortable/filterable list with acknowledgment tracking, alarm help text, and corrective action guidance displayed to operators. Alarm rate limiting prevents flooding when single fault triggers hundreds of consequential alarms: introduce 5-second delays before enabling secondary alarms allowing operators to focus on root cause. Email notification for critical alarms uses Ethernet communication function blocks sending SMTP messages to distribution lists with alarm details formatted in message body. Statistical alarm analysis counts alarm frequencies storing totals in file registers: most frequent alarm identification guides preventive maintenance priorities addressing chronic equipment issues before failures occur. *)
(* Internal State *)
eInternalState : E_ControlState;
tonWatchdog : TON;
END_VAR
(* Safety Monitor - Use intrinsically safe sensors and barriers in hazardous areas *)
fbSafety(
Enable := bEnable,
EmergencyStop := bEmergencyStop,
ProcessValue := rProcessValue,
HighLimit := rSetpoint * 1.2,
LowLimit := rSetpoint * 0.1
);
(* Main Control Logic *)
IF fbSafety.SafeToRun THEN
(* Ramp Generator - Prevents startup surge *)
fbRamp(
Enable := bEnable,
TargetValue := rSetpoint,
RampRate := 20.0, (* Universal rate *)
CurrentValue => rSetpoint
);
(* PID Controller - Process regulation *)
fbPID(
Enable := fbRamp.InPosition,
ProcessValue := rProcessValue,
Setpoint := fbRamp.CurrentValue,
Kp := 1.0,
Ki := 0.1,
Kd := 0.05,
OutputMin := 0.0,
OutputMax := 100.0
);
rControlOutput := fbPID.Output;
bRunning := TRUE;
bFault := FALSE;
nFaultCode := 0;
ELSE
(* Safe State - Implement redundant sensors for safety-critical measurements *)
rControlOutput := 0.0;
bRunning := FALSE;
bFault := NOT bEnable; (* Only fault if not intentional stop *)
nFaultCode := fbSafety.FaultCode;
END_IF;
(* Diagnostics - High-speed data logging in Mitsubishi uses file registers (R devices) organized as circular buffers with automatic SD card archiving for long-term storage. Create logging structure: file registers R0-R9999 storing 10,000 samples with each sample containing timestamp (R[base]), values (R[base+1] to R[base+10]), status (R[base+11]). Write pointer (D500) increments with each log entry: [MOV current time R[(D500*12)]] [MOV process values R[(D500*12)+1]] [INC D500] with modulo operation wrapping pointer [LD> D500 K9999] [MOV K0 D500]. Triggered logging initiates capture on alarm conditions preserving pre-trigger buffer: maintain continuous logging but flag trigger index enabling post-event retrieval of 100 samples before alarm and 500 samples after providing failure context. CSV file export uses SD card write instructions formatting file register data into comma-delimited text files readable by Excel or data analysis software: SDWR instruction writes R0-R9999 to SD:\LOG\data.csv with timestamp filename generation creating unique files daily. Sampling rates configurable from 10ms (fixed cycle interrupt program) to several minutes (main program logic) depending on process dynamics and storage capacity requirements. Data compression implements deadband filtering: log sample only when value changes exceed threshold reducing storage requirements for slowly-changing process variables like tank levels or temperatures. Integration with SCADA/historian systems uses SLMP protocol transferring logged data via Ethernet to centralized databases with automatic retry logic handling network interruptions preventing data loss. Batch correlation links production data to specific product lots: each batch start creates new log file section with batch ID header enabling traceability from raw materials through finished goods. Energy logging totalizes consumption from power meters connected via CC-Link or Modbus calculating specific energy per produced unit, identifying efficiency improvements and cost allocation by product line. Safety event logging captures all safety input states, bypass activations, and emergency stop events with tamper-proof timestamps meeting regulatory documentation requirements for incident investigations and compliance audits. *)
fbDiag(
ProcessRunning := bRunning,
FaultActive := bFault,
ProcessValue := rProcessValue,
ControlOutput := rControlOutput
);
(* Watchdog - Detects frozen control *)
tonWatchdog(IN := bRunning AND NOT fbPID.OutputChanging, PT := T#10S);
IF tonWatchdog.Q THEN
bFault := TRUE;
nFaultCode := 99; (* Watchdog fault *)
END_IF;
(* Reset Logic *)
IF bReset AND NOT bEmergencyStop THEN
bFault := FALSE;
nFaultCode := 0;
fbDiag.ClearAlarms();
END_IF;
END_FUNCTION_BLOCKCode Explanation:
- 1.Encapsulated function block follows Function block (FB) programming in Mitsu - reusable across Universal projects
- 2.FB_SafetyMonitor provides Use intrinsically safe sensors and barriers in hazardous areas including high/low limits
- 3.FB_RampGenerator prevents startup issues common in Sensor Integration systems
- 4.FB_PIDController tuned for Universal: Kp=1.0, Ki=0.1
- 5.Watchdog timer detects frozen control - critical for beginner to intermediate Sensor Integration reliability
- 6.Diagnostic function block enables High-speed data logging in Mitsubishi uses file registers (R devices) organized as circular buffers with automatic SD card archiving for long-term storage. Create logging structure: file registers R0-R9999 storing 10,000 samples with each sample containing timestamp (R[base]), values (R[base+1] to R[base+10]), status (R[base+11]). Write pointer (D500) increments with each log entry: [MOV current time R[(D500*12)]] [MOV process values R[(D500*12)+1]] [INC D500] with modulo operation wrapping pointer [LD> D500 K9999] [MOV K0 D500]. Triggered logging initiates capture on alarm conditions preserving pre-trigger buffer: maintain continuous logging but flag trigger index enabling post-event retrieval of 100 samples before alarm and 500 samples after providing failure context. CSV file export uses SD card write instructions formatting file register data into comma-delimited text files readable by Excel or data analysis software: SDWR instruction writes R0-R9999 to SD:\LOG\data.csv with timestamp filename generation creating unique files daily. Sampling rates configurable from 10ms (fixed cycle interrupt program) to several minutes (main program logic) depending on process dynamics and storage capacity requirements. Data compression implements deadband filtering: log sample only when value changes exceed threshold reducing storage requirements for slowly-changing process variables like tank levels or temperatures. Integration with SCADA/historian systems uses SLMP protocol transferring logged data via Ethernet to centralized databases with automatic retry logic handling network interruptions preventing data loss. Batch correlation links production data to specific product lots: each batch start creates new log file section with batch ID header enabling traceability from raw materials through finished goods. Energy logging totalizes consumption from power meters connected via CC-Link or Modbus calculating specific energy per produced unit, identifying efficiency improvements and cost allocation by product line. Safety event logging captures all safety input states, bypass activations, and emergency stop events with tamper-proof timestamps meeting regulatory documentation requirements for incident investigations and compliance audits. and Alarm management in Mitsubishi uses bit devices (M or B) for alarm active flags with corresponding data registers storing timestamps, values, and alarm details. Alarm structure allocates device ranges: M1000-M1999 for alarm active flags (1000 unique alarms), D5000-D5999 storing alarm timestamps or associated values. Alarm detection logic: [LD Tank_Level > High_Limit] [AND NOT previous alarm state M1000] [OUT M1000] [MOV current time D5000] capturing alarm activation moment. Alarm acknowledgment requires operator action via HMI: GOT screen button writes to acknowledgment bit (M2000) which resets alarm flag when condition clears [LD M1000] [AND alarm cleared] [AND M2000 acknowledged] [RST M1000] [RST M2000]. Priority classification uses different device ranges or separate bits: Critical alarms M1000-M1099, Warnings M1100-M1199, Information M1200-M1299 with severity-specific visual/audible HMI indicators. Alarm logging to SD card uses CSV file write instructions (SDWR) recording alarm number, timestamp, activation/deactivation, and associated process values for historical analysis and regulatory compliance. First-out alarm detection latches initial alarm in cascade of related faults: bearing temperature alarm (M1050) latches before motor overload (M1051) before production stopped (M1052) with reset sequence clearing in reverse order after root cause addressed. Integration with GOT HMI alarm viewer displays active alarms in sortable/filterable list with acknowledgment tracking, alarm help text, and corrective action guidance displayed to operators. Alarm rate limiting prevents flooding when single fault triggers hundreds of consequential alarms: introduce 5-second delays before enabling secondary alarms allowing operators to focus on root cause. Email notification for critical alarms uses Ethernet communication function blocks sending SMTP messages to distribution lists with alarm details formatted in message body. Statistical alarm analysis counts alarm frequencies storing totals in file registers: most frequent alarm identification guides preventive maintenance priorities addressing chronic equipment issues before failures occur.
Best Practices
- ✓Follow Mitsubishi naming conventions: Mitsubishi programming supports both traditional device addressing (M0, D100, X1
- ✓Mitsubishi function design: Function block (FB) programming in Mitsubishi creates reusable logic modules wit
- ✓Data organization: Mitsubishi uses file registers (R devices) and structured data in function block
- ✓Function Blocks: Arrange blocks for clear left-to-right data flow
- ✓Function Blocks: Use consistent spacing and alignment for readability
- ✓Function Blocks: Label all inputs and outputs with meaningful names
- ✓Sensor Integration: Document wire colors and termination points for maintenance
- ✓Sensor Integration: Use proper cold junction compensation for thermocouples
- ✓Sensor Integration: Provide test points for verification without disconnection
- ✓Debug with GX Works2/GX Works3: Use sampling trace to capture high-speed events occurring faster than
- ✓Safety: Use intrinsically safe sensors and barriers in hazardous areas
- ✓Use GX Works2/GX Works3 simulation tools to test Sensor Integration logic before deployment
Common Pitfalls to Avoid
- ⚠Function Blocks: Creating feedback loops without proper initialization
- ⚠Function Blocks: Connecting incompatible data types
- ⚠Function Blocks: Not considering execution order dependencies
- ⚠Mitsubishi common error: Error 2110: Illegal device specified - accessing device outside configured range
- ⚠Sensor Integration: Electrical noise affecting analog signals
- ⚠Sensor Integration: Sensor drift requiring periodic recalibration
- ⚠Neglecting to validate Discrete sensors (proximity, photoelectric, limit switches) leads to control errors
- ⚠Insufficient comments make Function Blocks programs unmaintainable over time