Intermediate20 min readBuilding Automation

ABB Structured Text for HVAC Control

Learn Structured Text programming for HVAC Control using ABB Automation Builder. Includes code examples, best practices, and step-by-step implementation guide for Building Automation applications.

💻
Platform
Automation Builder
📊
Complexity
Intermediate
⏱️
Project Duration
2-4 weeks
Learning to implement Structured Text for HVAC Control using ABB's Automation Builder is an essential skill for PLC programmers working in Building Automation. This comprehensive guide walks you through the fundamentals, providing clear explanations and practical examples that you can apply immediately to real-world projects. ABB has established itself as Medium - Strong in power generation, mining, and marine applications, making it a strategic choice for HVAC Control applications. With 8% global market share and 3 popular PLC families including the AC500 and AC500-eCo, ABB provides the robust platform needed for intermediate complexity projects like HVAC Control. The Structured Text approach is particularly well-suited for HVAC Control because complex calculations, data manipulation, advanced control algorithms, and when code reusability is important. This combination allows you to leverage powerful for complex logic while managing the typical challenges of HVAC Control, including energy optimization and zone control coordination. Throughout this guide, you'll discover step-by-step implementation strategies, working code examples tested on Automation Builder, and industry best practices specific to Building Automation. Whether you're programming your first HVAC Control system or transitioning from another PLC platform, this guide provides the practical knowledge you need to succeed with ABB Structured Text programming.

ABB Automation Builder for HVAC Control

Automation Builder provides ABB's unified environment for AC500 PLC programming, drive configuration, and HMI development. Built on CODESYS V3 with ABB-specific enhancements. Strength lies in seamless drive integration with ACS880 and other families....

Platform Strengths for HVAC Control:

  • Excellent for robotics integration

  • Strong in power and utilities

  • Robust hardware for harsh environments

  • Good scalability


Unique ${brand.software} Features:

  • Integrated drive configuration for ACS880, ACS580 drives

  • Extensive application libraries: HVAC, pumping, conveying, crane control

  • Safety programming for AC500-S within standard project

  • Panel Builder 600 HMI development integrated


Key Capabilities:

The Automation Builder environment excels at HVAC Control applications through its excellent for robotics integration. This is particularly valuable when working with the 5 sensor types typically found in HVAC Control systems, including Temperature sensors (RTD, Thermocouple), Humidity sensors, Pressure sensors.

Control Equipment for HVAC Control:

  • Air handling units (AHUs) with supply and return fans

  • Variable air volume (VAV) boxes with reheat

  • Chillers and cooling towers for central cooling

  • Boilers and heat exchangers for heating


ABB's controller families for HVAC Control include:

  • AC500: Suitable for intermediate HVAC Control applications

  • AC500-eCo: Suitable for intermediate HVAC Control applications

  • AC500-S: Suitable for intermediate HVAC Control applications

Hardware Selection Guidance:

PM554 entry-level for simple applications. PM564 mid-range for OEM machines. PM573 high-performance for complex algorithms. PM5 series latest generation with cloud connectivity. AC500-S for integrated safety....

Industry Recognition:

Medium - Strong in power generation, mining, and marine applications. AC500 coordinating VFD-controlled motors with ACS880 drives. Energy optimization reducing consumption 25-40%. Robot integration via ABB robot interfaces. Press line automation with AC500-S safety....

Investment Considerations:

With $$ pricing, ABB positions itself in the mid-range segment. For HVAC Control projects requiring intermediate skill levels and 2-4 weeks development time, the total investment includes hardware, software licensing, training, and ongoing support.

Understanding Structured Text for HVAC Control

Structured Text (ST) is a high-level, text-based programming language defined in IEC 61131-3. It resembles Pascal and provides powerful constructs for complex algorithms, calculations, and data manipulation.

Execution Model:

Code executes sequentially from top to bottom within each program unit. Variables maintain state between scan cycles unless explicitly reset.

Core Advantages for HVAC Control:

  • Powerful for complex logic: Critical for HVAC Control when handling intermediate control logic

  • Excellent code reusability: Critical for HVAC Control when handling intermediate control logic

  • Compact code representation: Critical for HVAC Control when handling intermediate control logic

  • Good for algorithms and calculations: Critical for HVAC Control when handling intermediate control logic

  • Familiar to software developers: Critical for HVAC Control when handling intermediate control logic


Why Structured Text Fits HVAC Control:

HVAC Control systems in Building Automation typically involve:

  • Sensors: Temperature sensors (RTD, thermistors, thermocouples) for zone and supply/return monitoring, Humidity sensors (capacitive or resistive) for moisture control, CO2 sensors for demand-controlled ventilation

  • Actuators: Variable frequency drives (VFDs) for fan and pump speed control, Modulating control valves (2-way and 3-way) for heating/cooling coils, Damper actuators (0-10V or 4-20mA) for air flow control

  • Complexity: Intermediate with challenges including Tuning PID loops for slow thermal processes without causing oscillation


Control Strategies for HVAC Control:

  • zoneTemperature: Cascaded PID control where zone temperature error calculates supply air temperature setpoint, which then modulates cooling/heating valves or VAV damper position

  • supplyAirTemperature: PID control of cooling coil valve, heating coil valve, or economizer dampers to maintain supply air temperature setpoint

  • staticPressure: PID control of supply fan VFD speed to maintain duct static pressure setpoint for proper VAV box operation


Programming Fundamentals in Structured Text:

Variables:
- declaration: VAR / VAR_INPUT / VAR_OUTPUT / VAR_IN_OUT / VAR_GLOBAL sections
- initialization: Variables can be initialized at declaration: Counter : INT := 0;
- constants: VAR CONSTANT section for read-only values

Operators:
- arithmetic: + - * / MOD (modulo)
- comparison: = <> < > <= >=
- logical: AND OR XOR NOT

ControlStructures:
- if: IF condition THEN statements; ELSIF condition THEN statements; ELSE statements; END_IF;
- case: CASE selector OF value1: statements; value2: statements; ELSE statements; END_CASE;
- for: FOR index := start TO end BY step DO statements; END_FOR;

Best Practices for Structured Text:

  • Use meaningful variable names with consistent naming conventions

  • Initialize all variables at declaration to prevent undefined behavior

  • Use enumerated types for state machines instead of magic numbers

  • Break complex expressions into intermediate variables for readability

  • Use functions for reusable calculations and function blocks for stateful operations


Common Mistakes to Avoid:

  • Using = instead of := for assignment (= is comparison)

  • Forgetting semicolons at end of statements

  • Integer division truncation - use REAL for decimal results

  • Infinite loops from incorrect WHILE/REPEAT conditions


Typical Applications:

1. PID control: Directly applicable to HVAC Control
2. Recipe management: Related control patterns
3. Statistical calculations: Related control patterns
4. Data logging: Related control patterns

Understanding these fundamentals prepares you to implement effective Structured Text solutions for HVAC Control using ABB Automation Builder.

Implementing HVAC Control with Structured Text

HVAC (Heating, Ventilation, and Air Conditioning) control systems use PLCs to regulate temperature, humidity, and air quality in buildings and industrial facilities. These systems balance comfort, energy efficiency, and equipment longevity through sophisticated control algorithms.

This walkthrough demonstrates practical implementation using ABB Automation Builder and Structured Text programming.

System Requirements:

A typical HVAC Control implementation includes:

Input Devices (Sensors):
1. Temperature sensors (RTD, thermistors, thermocouples) for zone and supply/return monitoring: Critical for monitoring system state
2. Humidity sensors (capacitive or resistive) for moisture control: Critical for monitoring system state
3. CO2 sensors for demand-controlled ventilation: Critical for monitoring system state
4. Pressure sensors for duct static pressure and building pressurization: Critical for monitoring system state
5. Occupancy sensors (PIR, ultrasonic) for demand-based operation: Critical for monitoring system state

Output Devices (Actuators):
1. Variable frequency drives (VFDs) for fan and pump speed control: Primary control output
2. Modulating control valves (2-way and 3-way) for heating/cooling coils: Supporting control function
3. Damper actuators (0-10V or 4-20mA) for air flow control: Supporting control function
4. Compressor contactors and staging relays: Supporting control function
5. Humidifier and dehumidifier control outputs: Supporting control function

Control Equipment:

  • Air handling units (AHUs) with supply and return fans

  • Variable air volume (VAV) boxes with reheat

  • Chillers and cooling towers for central cooling

  • Boilers and heat exchangers for heating


Control Strategies for HVAC Control:

  • zoneTemperature: Cascaded PID control where zone temperature error calculates supply air temperature setpoint, which then modulates cooling/heating valves or VAV damper position

  • supplyAirTemperature: PID control of cooling coil valve, heating coil valve, or economizer dampers to maintain supply air temperature setpoint

  • staticPressure: PID control of supply fan VFD speed to maintain duct static pressure setpoint for proper VAV box operation


Implementation Steps:

Step 1: Document all zones with temperature requirements and occupancy schedules

In Automation Builder, document all zones with temperature requirements and occupancy schedules.

Step 2: Create I/O list with all sensors, actuators, and their signal types

In Automation Builder, create i/o list with all sensors, actuators, and their signal types.

Step 3: Define setpoints, operating limits, and alarm thresholds

In Automation Builder, define setpoints, operating limits, and alarm thresholds.

Step 4: Implement zone temperature control loops with anti-windup

In Automation Builder, implement zone temperature control loops with anti-windup.

Step 5: Program equipment sequencing with proper lead-lag rotation

In Automation Builder, program equipment sequencing with proper lead-lag rotation.

Step 6: Add economizer logic with lockouts for high humidity conditions

In Automation Builder, add economizer logic with lockouts for high humidity conditions.


ABB Function Design:

Standard FB structure with VAR_INPUT/OUTPUT/VAR. Methods extend functionality. ABB application libraries provide tested FBs. Drive FBs wrap drive parameter access.

Common Challenges and Solutions:

1. Tuning PID loops for slow thermal processes without causing oscillation

  • Solution: Structured Text addresses this through Powerful for complex logic.


2. Preventing simultaneous heating and cooling which wastes energy

  • Solution: Structured Text addresses this through Excellent code reusability.


3. Managing zone interactions in open-plan spaces

  • Solution: Structured Text addresses this through Compact code representation.


4. Balancing fresh air requirements with energy efficiency

  • Solution: Structured Text addresses this through Good for algorithms and calculations.


Safety Considerations:

  • Freeze protection for coils with low-limit thermostats and valve positioning

  • High-limit safety shutoffs for heating equipment

  • Smoke detector integration for fan shutdown and damper closure

  • Fire/smoke damper monitoring and control

  • Emergency ventilation modes for hazardous conditions


Performance Metrics:

  • Scan Time: Optimize for 5 inputs and 5 outputs

  • Memory Usage: Efficient data structures for AC500 capabilities

  • Response Time: Meeting Building Automation requirements for HVAC Control

ABB Diagnostic Tools:

Online monitoring with live values,Watch window with expressions,Breakpoints for inspection,Drive diagnostics showing fault history,Communication diagnostics for network statistics

ABB's Automation Builder provides tools for performance monitoring and optimization, essential for achieving the 2-4 weeks development timeline while maintaining code quality.

ABB Structured Text Example for HVAC Control

Complete working example demonstrating Structured Text implementation for HVAC Control using ABB Automation Builder. Follows ABB naming conventions. Tested on AC500 hardware.

(* ABB Automation Builder - HVAC Control Control *)
(* Structured Text Implementation for Building Automation *)
(* g_ prefix for globals. i_/q_ for FB I/O. Type prefixes: b=BOOL, n=INT, *)

PROGRAM PRG_HVAC_CONTROL_Control

VAR
    (* State Machine Variables *)
    eState : E_HVAC_CONTROL_States := IDLE;
    bEnable : BOOL := FALSE;
    bFaultActive : BOOL := FALSE;

    (* Timers *)
    tonDebounce : TON;
    tonProcessTimeout : TON;
    tonFeedbackCheck : TON;

    (* Counters *)
    ctuCycleCounter : CTU;

    (* Process Variables *)
    rTemperaturesensorsRTDThermocouple : REAL := 0.0;
    rVariablefrequencydrivesVFDs : REAL := 0.0;
    rSetpoint : REAL := 100.0;
END_VAR

VAR CONSTANT
    (* Building Automation Process Parameters *)
    C_DEBOUNCE_TIME : TIME := T#500MS;
    C_PROCESS_TIMEOUT : TIME := T#30S;
    C_BATCH_SIZE : INT := 50;
END_VAR

(* Input Conditioning *)
tonDebounce(IN := bStartButton, PT := C_DEBOUNCE_TIME);
bEnable := tonDebounce.Q AND NOT bEmergencyStop AND bSafetyOK;

(* Main State Machine - Pattern: CASE eState OF IDLE: IF bStartCmd THEN e *)
CASE eState OF
    IDLE:
        rVariablefrequencydrivesVFDs := 0.0;
        ctuCycleCounter(RESET := TRUE);
        IF bEnable AND rTemperaturesensorsRTDThermocouple > 10.0 THEN
            eState := STARTING;
        END_IF;

    STARTING:
        (* Ramp up output - Gradual start *)
        rVariablefrequencydrivesVFDs := MIN(rVariablefrequencydrivesVFDs + 5.0, rSetpoint);
        IF rVariablefrequencydrivesVFDs >= rSetpoint THEN
            eState := RUNNING;
        END_IF;

    RUNNING:
        (* HVAC Control active - HVAC (Heating, Ventilation, and Air Conditioning)  *)
        tonProcessTimeout(IN := TRUE, PT := C_PROCESS_TIMEOUT);
        ctuCycleCounter(CU := bCyclePulse, PV := C_BATCH_SIZE);

        IF ctuCycleCounter.Q THEN
            eState := COMPLETE;
        ELSIF tonProcessTimeout.Q THEN
            bFaultActive := TRUE;
            eState := FAULT;
        END_IF;

    COMPLETE:
        rVariablefrequencydrivesVFDs := 0.0;
        (* Log production data - Circular buffer with ST_LogRecord. Write index with modulo wrap. Triggered capture with pre/post samples. File export using file system library. *)
        eState := IDLE;

    FAULT:
        rVariablefrequencydrivesVFDs := 0.0;
        (* ST_Alarm structure with bActive, bAcknowledged, dtActivation, nCode, sMessage. Array of alarms with detection and acknowledgment logic. Integration with ABB alarm libraries. *)
        IF bFaultReset AND NOT bEmergencyStop THEN
            bFaultActive := FALSE;
            eState := IDLE;
        END_IF;
END_CASE;

(* Safety Override - Always executes *)
IF bEmergencyStop OR NOT bSafetyOK THEN
    rVariablefrequencydrivesVFDs := 0.0;
    eState := FAULT;
    bFaultActive := TRUE;
END_IF;

END_PROGRAM

Code Explanation:

  • 1.Enumerated state machine (CASE eState OF IDLE: IF bStartCmd THEN eState := STARTING; END_IF; STARTING: tonStarting(IN := TRUE, PT := T#10S); IF bRunConfirm THEN eState := RUNNING; END_IF; END_CASE; Log transitions.) for clear HVAC Control sequence control
  • 2.Constants define Building Automation-specific parameters: cycle time 30s, batch size
  • 3.Input conditioning with debounce timer prevents false triggers in industrial environment
  • 4.STARTING state implements soft-start ramp - prevents mechanical shock
  • 5.Process timeout detection identifies stuck conditions - critical for reliability
  • 6.Safety override section executes regardless of state - ABB best practice for intermediate systems

Best Practices

  • Follow ABB naming conventions: g_ prefix for globals. i_/q_ for FB I/O. Type prefixes: b=BOOL, n=INT, r=REAL, s
  • ABB function design: Standard FB structure with VAR_INPUT/OUTPUT/VAR. Methods extend functionality. A
  • Data organization: DUTs define structures. GVLs group related data. Retain attribute preserves vari
  • Structured Text: Use meaningful variable names with consistent naming conventions
  • Structured Text: Initialize all variables at declaration to prevent undefined behavior
  • Structured Text: Use enumerated types for state machines instead of magic numbers
  • HVAC Control: Use slow integral action for temperature loops to prevent hunting
  • HVAC Control: Implement anti-windup to prevent integral buildup during saturation
  • HVAC Control: Add rate limiting to outputs to prevent actuator wear
  • Debug with Automation Builder: Use structured logging to controller log
  • Safety: Freeze protection for coils with low-limit thermostats and valve positioning
  • Use Automation Builder simulation tools to test HVAC Control logic before deployment

Common Pitfalls to Avoid

  • Structured Text: Using = instead of := for assignment (= is comparison)
  • Structured Text: Forgetting semicolons at end of statements
  • Structured Text: Integer division truncation - use REAL for decimal results
  • ABB common error: Exception 'AccessViolation': Null pointer access
  • HVAC Control: Tuning PID loops for slow thermal processes without causing oscillation
  • HVAC Control: Preventing simultaneous heating and cooling which wastes energy
  • Neglecting to validate Temperature sensors (RTD, thermistors, thermocouples) for zone and supply/return monitoring leads to control errors
  • Insufficient comments make Structured Text programs unmaintainable over time

Related Certifications

🏆ABB Automation Certification
🏆Advanced ABB Programming Certification
Mastering Structured Text for HVAC Control applications using ABB Automation Builder requires understanding both the platform's capabilities and the specific demands of Building Automation. This guide has provided comprehensive coverage of implementation strategies, working code examples, best practices, and common pitfalls to help you succeed with intermediate HVAC Control projects. ABB's 8% market share and medium - strong in power generation, mining, and marine applications demonstrate the platform's capability for demanding applications. The platform excels in Building Automation applications where HVAC Control reliability is critical. By following the practices outlined in this guide—from proper program structure and Structured Text best practices to ABB-specific optimizations—you can deliver reliable HVAC Control systems that meet Building Automation requirements. **Next Steps for Professional Development:** 1. **Certification**: Pursue ABB Automation Certification to validate your ABB expertise 3. **Hands-on Practice**: Build HVAC Control projects using AC500 hardware 4. **Stay Current**: Follow Automation Builder updates and new Structured Text features **Structured Text Foundation:** Structured Text (ST) is a high-level, text-based programming language defined in IEC 61131-3. It resembles Pascal and provides powerful constructs for... The 2-4 weeks typical timeline for HVAC Control projects will decrease as you gain experience with these patterns and techniques. Remember: Use slow integral action for temperature loops to prevent hunting For further learning, explore related topics including Recipe management, Hospital environmental systems, and ABB platform-specific features for HVAC Control optimization.